Câu hỏi:

24/07/2022 141

Cho hình lăng trụ tam giác đều \[ABC.A'B'C'.\] Góc giữa hai mặt phẳng \[\left( {A'BC} \right)\] \[\left( {ABC} \right)\]bằng \[30^\circ .\] Tam giác \[A'BC\] có diện tích bằng 8. Tính thể tích khối lăng trụ \[ABC.A'B'C'.\]

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Cho hình lăng trụ tam giác đều ABC.A'B'C' Góc giữa hai mặt phẳng  (ảnh 1)

Kẻ \(AH \bot BC \Rightarrow \widehat {\left( {(A'BC);(ABC)} \right)} = \widehat {A'HA} = 30^\circ \)

\( \Rightarrow \cos 30^\circ = \frac{{AH}}{{A'H}} = \frac{{\sqrt 3 }}{2} \Rightarrow A'H = \frac{2}{{\sqrt 3 }}AH = \frac{2}{{\sqrt 3 }}.\frac{{AB\sqrt 3 }}{2} = AB\).

\({S_{A'BC}} = \frac{1}{2}BC.A'H = \frac{1}{2}AB.AB = 8 \Rightarrow AB = 4\).

\(\tan 30^\circ = \frac{{A'A}}{{AH}} = \frac{{A'A}}{{\frac{{AB\sqrt 3 }}{2}}} \Rightarrow A'A = 2\)

\( \Rightarrow V = A'A.{S_{ABC}} = A'A.\frac{{A{B^2}\sqrt 3 }}{4} = 8\sqrt 3 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \[\int\limits_0^1 {f\left( x \right)dx} = 2\]\[\int\limits_1^2 {f\left( x \right)dx} = - 3.\] Tích phân \[\int\limits_0^2 {f\left( x \right)dx} \] bằng

Xem đáp án » 24/07/2022 3,417

Câu 2:

Cho khối lăng trụ \[ABC.A'B'C'\] có thể tích bằng \[9{a^3}\] và M là điểm nằm trên cạnh \[CC'\] sao cho \[MC = 2MC'\]. Thể tích khối tứ diện \[AB'CM\] bằng

Xem đáp án » 24/07/2022 3,356

Câu 3:

Cho hàm số \[y = \frac{{mx + 7m - 8}}{{x - m}}\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên từng khoảng xác định?

Xem đáp án » 24/07/2022 2,311

Câu 4:

Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng

Xem đáp án » 24/07/2022 1,985

Câu 5:

Trong không gian Oxyz, cho hai điểm \[A\left( {2;3;4} \right),{\rm{ }}B\left( {6;2;2} \right).\] Tìm tọa độ của vectơ \[\overrightarrow {AB} .\]

Xem đáp án » 24/07/2022 1,007

Câu 6:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = {e^{4x + 3}}\]

Xem đáp án » 24/07/2022 865

Câu 7:

Cho \[a,{\rm{ }}b\] là các số thực dương thỏa mãn \[b > 1\] \[\sqrt a \le b < a.\] Giá trị nhỏ nhất của biểu thức \[P = {\log _{\frac{a}{b}}}a + 2{\log _{\sqrt b }}\left( {\frac{a}{b}} \right)\] bằng

Xem đáp án » 24/07/2022 728

Bình luận


Bình luận