Câu hỏi:
24/07/2022 307Cho ba số phức \[{z_1},{\rm{ }}{z_2},{\rm{ }}{z_3}\] thỏa mãn \[\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1\]; \[\left| {{z_1} - {z_2}} \right| = \frac{{\sqrt 6 + \sqrt 2 }}{2}\] và \[z_1^2 = {z_2}{z_3}.\] Tính giá trị của \[\left| {{z_2} - {z_3}} \right| - \left| {{z_3} - {z_1}} \right|\].
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Gọi M, N, P lần lượt là các điểm biểu diễn các số phức \({z_1},{z_2},{z_3}\).
Suy ra M, N, P thuộc đường tròn \(\left( {O;1} \right)\).
Ta có \(MN = \left| {{z_1} - {z_2}} \right| = \frac{{\sqrt 6 + \sqrt 2 }}{2}\).
Kẻ \(OH \bot MN \Rightarrow MH = \frac{{MN}}{2} = \frac{{\sqrt 6 + \sqrt 2 }}{4} \Rightarrow \cos \widehat {OMN} = \frac{{MN}}{{OM}} = \frac{{\sqrt 6 + \sqrt 2 }}{4}\)
\( \Rightarrow \widehat {OMN} = {15^0} \Rightarrow \widehat {MON} = {150^0}\)
Ta có \(\left| {{z_3} - {z_1}} \right| = \left| {{z_1}} \right|.\left| {{z_3} - {z_1}} \right| = \left| {{z_3}{z_1} - z_1^2} \right| = \left| {{z_3}{z_1} - {z_3}{z_2}} \right| = \left| {{z_3}} \right|.\left| {{z_1} - {z_2}} \right| = \frac{{\sqrt 6 + \sqrt 2 }}{2}\)
\( \Rightarrow MP = \left| {{z_3} - {z_1}} \right| = \frac{{\sqrt 6 + \sqrt 2 }}{2} \Rightarrow MN = MP = \frac{{\sqrt 6 + \sqrt 2 }}{2}.\)
Tương tự như trên \( \Rightarrow \widehat {MOP} = {150^0} \Rightarrow \widehat {NOP} = {360^0} - \left( {{{150}^0} + {{150}^0}} \right) = {60^0}\)
\( \Rightarrow \Delta NOP\) đều \( \Rightarrow NP = 1\)
\( \Rightarrow \left| {{z_2} - {z_3}} \right| = NP = 1 \Rightarrow \left| {{z_2} - {z_3}} \right| - \left| {{z_3} - {z_1}} \right| = 1 - \frac{{\sqrt 6 + \sqrt 2 }}{2} = \frac{{2 - \sqrt 6 - \sqrt 2 }}{2}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho khối lăng trụ \[ABC.A'B'C'\] có thể tích bằng \[9{a^3}\] và M là điểm nằm trên cạnh \[CC'\] sao cho \[MC = 2MC'\]. Thể tích khối tứ diện \[AB'CM\] bằng
Câu 2:
Cho \[\int\limits_0^1 {f\left( x \right)dx} = 2\] và \[\int\limits_1^2 {f\left( x \right)dx} = - 3.\] Tích phân \[\int\limits_0^2 {f\left( x \right)dx} \] bằng
Câu 3:
Cho hàm số \[y = \frac{{mx + 7m - 8}}{{x - m}}\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên từng khoảng xác định?
Câu 4:
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBC} \right)\] bằng
Câu 5:
Trong không gian Oxyz, cho hai điểm \[A\left( {2;3;4} \right),{\rm{ }}B\left( {6;2;2} \right).\] Tìm tọa độ của vectơ \[\overrightarrow {AB} .\]
Câu 6:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = {e^{4x + 3}}\] là
Câu 7:
Cho hàm số f(x) liên tục trên \[\mathbb{R}.\] Gọi S là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = 0\] và \[x = 3\] (như hình vẽ). Mệnh đề nào dưới đây là đúng?
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
về câu hỏi!