Danh sách câu hỏi:

Câu 1:

Từ một nhóm có 10 học sinh nam và 15 học sinh nữ. Hỏi có bao nhiêu cách chọn ra 2 học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biễu diễn văn nghệ

Xem đáp án

Câu 1:

Trong không gian Oxyz cho mặt phẳng \[(P):2x - y + z - 1 = 0\] đi qua điểm nào sau đây?

Xem đáp án

Câu 2:

Lăng trụ có chiều cao bằng a đáy là tam giác vuông cân và có thể tích bằng \[2{a^3}\] .Cạnh góc vuông của đáy lăng trụ bằng

Xem đáp án

Câu 3:

Cho số phức \[z = 1 + 2i\] . Tìm tổng phần thực và phần ảo của số phức \[w = 2z + \bar z\] .

Xem đáp án

Câu 4:

Trong không gian Oxyz, đường thẳng \[d:\frac{{x - 3}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{{z - 4}}{2}\] cắt mặt phẳng \[\left( {Oxy} \right)\]tại điểm có tọa độ là

Xem đáp án

Câu 5:

Cho cấp số cộng có số hạng thứ 3 và số hạng thứ 7 lần lượt là 6 và – 2. Tìm số hạng thứ 5.

Xem đáp án

Câu 6:

Nguyên hàm của hàm số \[f\left( x \right) = \sqrt {3x + 2} \]

Xem đáp án

Câu 7:

Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây

Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây   	 (ảnh 1)

Xem đáp án

Câu 8:

Khoảng đồng biến của hàm số \[y = \sqrt {{x^2} - 8x} \]

Xem đáp án

Câu 9:

Cho đường thẳng Δ đi qua điểm \[M\left( {2;0; - 1} \right)\] và vecto chỉ phương \[\vec a = \left( {4; - 6;2} \right)\]. Phương trình tham số của đường thẳng Δ là

Xem đáp án

Câu 10:

Cho \[{\log _a}b = 2\] \[{\log _a}c = 3\]. Tính \[P = {\log _a}\left( {\frac{{{b^3}}}{{{c^2}}}} \right)\].

Xem đáp án

Câu 11:

Cho hình trụ có diện tích xung quanh bằng \[50\pi \] và độ dài đường sinh bằng đường kính của đường tròn đáy. Tính bán kính r của đường tròn đáy.

Xem đáp án

Câu 12:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như hình vẽ sau

Cho hàm số y=f(x)có bảng biến thiên như hình vẽ sau  (ảnh 1)

Số điểm cực tiểu của hàm số \[y = f\left( x \right)\]

Xem đáp án

Câu 13:

Cho \[\int\limits_0^2 {f(x)dx = 3} \] \[\int\limits_0^2 {g(x)dx = - 1} \]. Giá trị của \[\int\limits_0^2 {\left[ {f(x) - 5g(x) + x} \right]dx} \] bằng

Xem đáp án

Câu 14:

Cho số phức z thỏa mãn phương trình \[(3 + 2i)z + {(2 - i)^2} = 4 + i.\] Tìm tọa độ điểm M biểu diễn số phức z.

Xem đáp án

Câu 15:

Cho khối chóp S.ABCD có đáy là hình chữ nhật, \[AB = a\], \[AD = a\sqrt 3 \], SA vuông góc với đáy và mặt phẳng \[\left( {SBC} \right)\] tạo với đáy một góc \[60^\circ \]. Tính thể tích V của khối chóp S.ABCD.

Xem đáp án

Câu 16:

Trong không gian với hệ tọa độ Oxyz , hỏi trong các phương trình sau phương trình nào là phương trình của mặt cầu?

Xem đáp án

Câu 17:

Trong không gian với hệ tọa độ Oxyz  viết phương trình đường thẳng giao tuyến của hai mặt phẳng \[(\alpha ):x + 3y - z + 1 = 0,\] \[(\beta ):2x - y + z - 7 = 0\].

Xem đáp án

Câu 18:

Gọi \[{z_1},{z_2}\] là các nghiệm của phương trình \[{z^2} - 2z + 5 = 0\]. Tính \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\].

Xem đáp án

Câu 19:

Gọi \[{x_1},{x_2}\] là hai nghiệm của phương trình \[{4^{{x^2} - x}} + {2^{{x^2} - x + 1}} = 3\]. Tính \[\left| {{x_1} - {x_2}} \right|\].

Xem đáp án

Câu 20:

Tìm giá trị lớn nhất M của hàm số \[y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\] trên đoạn \[\left[ { - \frac{1}{2};2} \right]\].

Xem đáp án

Câu 22:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như hình dưới đây

Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây (ảnh 1)

Đồ thị hàm số đã cho có tổng bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

Xem đáp án

Câu 24:

Hàm số \[y = {\log _3}\left( {{x^2} - 4x + 3} \right)\] đồng biến trên khoảng nào sau đây

Xem đáp án

Câu 25:

Hình hộp chữ nhật \[ABCD.A'B'C'D'\]\[AB = a,\;AD = 3a\]\[AC' = 5a\] thì có thể tích là

Xem đáp án

Câu 27:

Cho \[{\log _a}x = 5,\;{\log _b}x = - 3\] với \[a,b\] là các số thực lớn hơn 1. Tính \[P = {\log _{\frac{{{a^2}}}{b}}}x\]

Xem đáp án

Câu 29:

Cho hàm số \[f\left( x \right)\] có đạo hàm là \[f'\left( x \right) = x{\left( {x + 1} \right)^2}{\left( {x - 2} \right)^4}\] với mọi \[x \in \mathbb{R}\]. Số điểm cực trị của hàm số f là:

Xem đáp án

Câu 30:

Cho số phức \[z = a + bi\] với \[a,b \in \mathbb{R}\] thỏa mãn \[\left( {1 + 3i} \right)z + \left( {2 + i} \right)\bar z = - 2 + 4i.\] Tính \[P = ab.\]

Xem đáp án

Câu 32:

Trong không gian với hệ tọa độ Oxyz  cho tam giác ABC biết \[A(2;1;0),B(3;0;2),C(4;3; - 4)\]. Viết phương trình đường phân giác trong góc A.

Xem đáp án

Câu 33:

Cho hàm số \[f\left( x \right),\] có bảng xét dấu \[f'\left( x \right)\] như sau

Cho hàm số f(x)  có bảng xét dấu f'(x)  như sau   (ảnh 1)

Hàm số \[y = f\left( {{x^2} - 2x} \right)\] đồng biến trên khoảng nào dưới dây

Xem đáp án

Câu 34:

Tính nguyên hàm \[I = \int {\frac{{x - 5}}{{{x^2} - 1}}{\rm{d}}x} \]

Xem đáp án

Câu 35:

Có bao nhiêu giá trị nguyên của m để bất phương trình \[{\log _2}\left( {7{x^2} + 7} \right) \ge {\log _2}\left( {m{x^2} + 4x + m} \right)\] nghiệm đúng với mọi x.

Xem đáp án

Câu 37:

Từ một hộp chứa 12 quả cầu, trong đó có 8 quả màu đỏ, 3 quả màu xanh và 1 quả màu vàng, lấy quả màu vàng, lấy ngẫu nhiên 3 quả. Xác suất để lấy được 3 quả cầu có đúng hai màu bằng:

Xem đáp án

Câu 38:

Cho hình chóp S.ABCD có SA vuông góc với đáy, \[SA = a\sqrt 6 .\] Đáy ABCD là hình thang vuông tại A và \[B,{\mkern 1mu} {\mkern 1mu} AB = BC = \frac{1}{2}AD = a.\] Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp \[S.ECD\].

Xem đáp án

Câu 39:

Cho hình chóp S.ABCD có các mặt phẳng \[\left( {SAB} \right),\left( {SAD} \right)\] cùng vuông góc với mặt phẳng \[\left( {ABCD} \right)\], đáy là hình thang vuông tại các đỉnh A và B, có \[AD = 2AB = 2BC = 2a\], \[SA = AC\]. Khoảng cách giữa hai đường thẳng SB và CD bằng:

Xem đáp án

Câu 41:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau: số nghiệm thuộc (ảnh 1)

Số nghiệm thuộc khoảng \[\left( {0;\pi } \right)\] của phương trình \[3f\left( {2 + 2\cos x} \right) - 4 = 0\]

Xem đáp án

Câu 45:

Cho hình lăng trụ \[ABC.A'B'C'\] có thể tích làV, gọi M, N lần lượt là trung điểm của \[A'C'\] \[B'C'\], G là trọng tâm tam giác \[ABC,\] mặt phẳng \[\left( {MNG} \right)\] chia khối lăng trụ đã cho thành hai phần, thể tích khối đa diện chứa đỉnh C′ là

Xem đáp án

Câu 48:

Trong không gian với hệ tọa độ Oxyz  cho hai điểm \[A(1;2; - 3),B( - 2; - 2;1)\] và mặt phẳng \[(\alpha ):2x + 2y - z + 9 = 0\]. Gọi M là điểm thay đổi trên mặt phẳng (α)sao cho M luôn nhìn đoạn AB dưới một góc vuông. Xác định phương trình đường thẳng MB khi MB đạt giá trị lớn nhất.

Xem đáp án

Câu 49:

Cho hàm số f(x) có bảng biến thiên sau:

Cho hàm số f(x) có bảng biến thiên sau:    Tìm giá trị nhỏ nhất của hàm số  (ảnh 1)

Tìm giá trị nhỏ nhất của hàm số \[f\left( {{x^3} - 3{x^2}} \right) - \frac{1}{5}{x^5} + \frac{1}{2}{x^4} + 3\] trên đoạn \[\left[ { - 1;2} \right]?\]

Xem đáp án

4.6

3055 Đánh giá

50%

40%

0%

0%

0%