Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như hình sau:

Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[{2.6^{f\left( x \right)}} + \left( {{f^2}\left( x \right) - 1} \right){.9^{f\left( x \right)}} - {3.4^{f\left( x \right)}}.m \ge \left( {2{m^2} + 2m} \right){.2^{2f\left( x \right)}}\] nghiệm đúng với mọi \[x \in \mathbb{R}\]?
Quảng cáo
Trả lời:
Đáp án D
\({2.6^{f\left( x \right)}} + \left( {{f^2}\left( x \right) - 1} \right){.9^{f\left( x \right)}} - {3.4^{f\left( x \right)}}.m \ge \left( {2{m^2} + 2m} \right){.2^{2f\left( x \right)}},\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left( {{f^2}\left( x \right) - 1} \right){.9^{f\left( x \right)}} + {2.6^{f\left( x \right)}} - \left( {2{m^2} + 5m} \right){.4^{f\left( x \right)}} \ge 0,\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left( {{f^2}\left( x \right) - 1} \right).{\left( {\frac{9}{4}} \right)^{f\left( x \right)}} + 2.{\left( {\frac{3}{2}} \right)^{f\left( x \right)}} - 2{m^2} - 5m \ge 0,\forall x \in \mathbb{R}\)
\( \Leftrightarrow 2{m^2} + 5m \le \left( {{f^2}\left( x \right) - 1} \right).{\left( {\frac{9}{4}} \right)^{f\left( x \right)}} + 2.{\left( {\frac{3}{2}} \right)^{f\left( x \right)}},\forall x \in \mathbb{R}\) (1)
Đặt \(t = f\left( x \right) \ge 1,{\rm{ }}\forall {\rm{x}} \in \mathbb{R}\). (1) thành: \(2{m^2} + 5m \le \left( {{t^2} - 1} \right){\left( {\frac{9}{4}} \right)^t} + 2{\left( {\frac{3}{2}} \right)^t},\forall t \in \left[ {1; + \infty } \right)\)
Đặt \(g\left( t \right) = \left( {{t^2} - 1} \right).{\left( {\frac{9}{4}} \right)^t} + 2{\left( {\frac{3}{2}} \right)^t},\forall t \in \left[ {1; + \infty } \right)\)
\( \Rightarrow g'\left( t \right) = 2t.{\left( {\frac{9}{4}} \right)^t} + \left( {{t^2} - 1} \right).{\left( {\frac{9}{4}} \right)^t}\ln \frac{9}{4} + 2.{\left( {\frac{3}{2}} \right)^t}\ln \frac{3}{2} > 0,\forall t \in \left[ {1; + \infty } \right)\)
Suy ra \(g\left( t \right) \ge g\left( 1 \right) = 3,\forall t \in \left[ {1; + \infty } \right)\).
Yêu cầu bài toán \( \Leftrightarrow 2{m^2} + 5m \le 3 \Leftrightarrow - 3 \le m \le \frac{1}{2}\).
Do \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 3; - 2; - 1;0} \right\}\) nên có 4 giá trị nguyên thỏa mãn.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D

Gọi M là trung điểm \(A{\rm{D}} \Rightarrow M{\rm{D}} = BC = \frac{{A{\rm{D}}}}{2}\) và \(M{\rm{D // BC }} \Rightarrow {\rm{MD}}CB\) là hình bình hành.
\( \Rightarrow d\left( {C{\rm{D}};SB} \right) = d\left( {D;(SBM)} \right) = d\left( {A;(SBM)} \right)\)
Gọi \(O = BM \cap AC\). Dễ dàng chứng minh AMCB là hình vuông \( \Rightarrow AC \bot BM\)
tại theo giao tuyến SO.
Trong \(\left( {SAO} \right)\), kẻ \(AH \bot {\rm{S}}O \Rightarrow AH \bot \left( {SBM} \right) \Rightarrow AH = d\left( {A;(SBM)} \right)\)
\(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{O^2}}} = \frac{1}{{A{C^2}}} + \frac{1}{{\frac{{A{C^2}}}{4}}} = \frac{5}{{A{C^2}}} = \frac{5}{{2{a^2}}} \Rightarrow AH = \frac{{a\sqrt {10} }}{5}\).
Lời giải
Đáp án B
Chọn ra 2 học sinh nam có \(C_{10}^2\) cách, chọn ra 3 học sinh nữ có \(C_{15}^3\) cách.
Theo quy tắc nhân có \(C_{10}^2.C_{15}^3\) cách để chọn ra 2học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biểu diễn văn nghệ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.