Câu hỏi:

28/06/2022 1,502 Lưu

Trong khôn gian tọa độ Oxyz, cho mặt cầu \[\left( S \right):\;{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{14}}{3}\] và đường thẳng \[d:\;\frac{{x - 1}}{3} = \frac{{y - 2}}{2} = \frac{{z - 3}}{1}.\] Gọi \[A\left( {{x_0};{y_0};{z_0}} \right)\;\left( {{x_0} > 0} \right)\] là điểm thuộc d sao cho từ A ta kẻ được ba tiếp tuyến đến mặt cầu (S) và các tiếp điểm \[B,\;C,\;D\] sao cho ABCD là tứ diện đều. Tính độ dài đoạn \[OA.\]

A. \[OA = 4\sqrt 3 .\]  
B. \[OA = 2\sqrt 2 .\]  
C. \[OA = 2\sqrt 3 .\]  
D. \[OA = 3.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Trong khôn gian tọa độ Oxyz, cho mặt cầu (S): (x-1)^2+(y-2)^2+(z-3)^2=14/3 (ảnh 1)

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính \(R = \sqrt {\frac{{14}}{3}} \)

AB là tiếp tuyến nên \(AB \bot BI\), lại có \(IB = IC = I{\rm{D}} = R\) nên AI là trục đường tròn ngoại tiếp tam giác BCD

Gọi \(H = AI \cap \left( {BC{\rm{D}}} \right)\), đặt \(AB = a = C{\rm{D}} \Rightarrow HB = \frac{{a\sqrt 3 }}{3}\)

\(\sin \widehat {HAB} = \frac{{BH}}{{AB}} = \frac{{\sqrt 3 }}{3}\)\(\Delta ABI\) vuông tại B nên

\(AI.\sin \widehat {HBA} = BI = \sqrt {\frac{{14}}{3}} \Rightarrow AI = \sqrt {14} \)

Gọi \(A\left( {1 + 3t;2 + 2t;3 + t} \right)\) ta có \(A{I^2} = 14{t^2} = 14\)

\( \Rightarrow \left[ \begin{array}{l}t =  - 1\\t = 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}A\left( { - 2;0;2} \right){\rm{ }}\left( {loai} \right)\\A\left( {4;4;4} \right)\end{array} \right. \Rightarrow OA = 4\sqrt 3 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{{a\sqrt 3 }}{2}\]                          
B. \[\frac{{a\sqrt {15} }}{5}\]         
C. \[\frac{{a\sqrt 3 }}{4}\]                                 
D. \[\frac{{a\sqrt {10} }}{5}\]

Lời giải

Đáp án D

Cho hình chóp S.ABCD có các mặt phẳng (SAB) (SAD) cùng một mặt phẳng (ảnh 1)

Gọi M là trung điểm \(A{\rm{D}} \Rightarrow M{\rm{D}} = BC = \frac{{A{\rm{D}}}}{2}\)\(M{\rm{D // BC }} \Rightarrow {\rm{MD}}CB\) là hình bình hành.

 

\( \Rightarrow d\left( {C{\rm{D}};SB} \right) = d\left( {D;(SBM)} \right) = d\left( {A;(SBM)} \right)\)

Gọi \(O = BM \cap AC\). Dễ dàng chứng minh AMCB là hình vuông \( \Rightarrow AC \bot BM\)

 tại  theo giao tuyến SO.

Trong \(\left( {SAO} \right)\), kẻ \(AH \bot {\rm{S}}O \Rightarrow AH \bot \left( {SBM} \right) \Rightarrow AH = d\left( {A;(SBM)} \right)\)

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{O^2}}} = \frac{1}{{A{C^2}}} + \frac{1}{{\frac{{A{C^2}}}{4}}} = \frac{5}{{A{C^2}}} = \frac{5}{{2{a^2}}} \Rightarrow AH = \frac{{a\sqrt {10} }}{5}\).

Câu 2

A. \[C_{25}^5.\]        
B. \[C_{10}^2C_{15}^3.\]                          
C. \[C_{10}^2 + C_{15}^3.\]                 
D. \[A_{10}^2.A_{15}^3.\]

Lời giải

Đáp án B

Chọn ra 2 học sinh nam có \(C_{10}^2\) cách, chọn ra 3 học sinh nữ có \(C_{15}^3\) cách.

Theo quy tắc nhân có \(C_{10}^2.C_{15}^3\) cách để chọn ra 2học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biểu diễn văn nghệ.

Câu 3

A. \[\left( { - 2;2} \right).\]                           
B. \[\left( { - \infty ; + \infty } \right).\]      
C. \[\left( { - \infty ;2} \right).\]                           
D. \[\left( {3; + \infty } \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left\{ {\begin{array}{*{20}{c}}{x = - 2 - t}\\{y = - 2 + 2t}\\{z = 1 + 2t}\end{array}} \right.\]             
B. \[\left\{ {\begin{array}{*{20}{c}}{x = - 2 + 2t}\\{y = - 2 - t}\\{z = 1 + 2t}\end{array}} \right.\]
C. \[\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = - 2}\\{z = 1 + 2t}\end{array}} \right.\]
D. \[\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = - 2 - t}\\{z = 1}\end{array}} \right.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{u_5} = 4.\]        
B. \[{u_5} = - 2.\]      
C. \[{u_5} = 0.\]        
D. \[{u_5} = 2.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[V = {a^3}\]         
B. \[V = \frac{{{a^3}}}{3}\]                       
C. \[V = 3{a^3}\]    
D. \[V = \frac{{\sqrt 3 {a^3}}}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP