Câu hỏi:
28/06/2022 138Tính nguyên hàm \[I = \int {\frac{{x - 5}}{{{x^2} - 1}}{\rm{d}}x} \]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Ta có: \(\frac{{x - 5}}{{{x^2} - 1}} = \frac{A}{{x - 1}} + \frac{B}{{x + 1}} = \frac{{\left( {A + B} \right)x + A - B}}{{{x^2} - 1}}\)
Đồng nhất 2 vế ta có: \(\left\{ \begin{array}{l}A + B = 1\\A - B = - 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}A = - 2\\B = 3\end{array} \right.\)
Suy ra \(I = \int {\left( {\frac{3}{{x + 1}} - \frac{2}{{x - 1}}} \right)d{\rm{x}}} = 3\ln \left| {x + 1} \right| - 2\ln \left| {x - 1} \right| + C = \ln \left| {\frac{{{{\left( {x + 1} \right)}^3}}}{{{{\left( {x - 1} \right)}^2}}}} \right| + C\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ một nhóm có 10 học sinh nam và 15 học sinh nữ. Hỏi có bao nhiêu cách chọn ra 2 học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biễu diễn văn nghệ
Câu 2:
Cho hình chóp S.ABCD có các mặt phẳng \[\left( {SAB} \right),\left( {SAD} \right)\] cùng vuông góc với mặt phẳng \[\left( {ABCD} \right)\], đáy là hình thang vuông tại các đỉnh A và B, có \[AD = 2AB = 2BC = 2a\], \[SA = AC\]. Khoảng cách giữa hai đường thẳng SB và CD bằng:
Câu 3:
Trong không gian với hệ tọa độ Oxyz cho hai điểm \[A(1;2; - 3),B( - 2; - 2;1)\] và mặt phẳng \[(\alpha ):2x + 2y - z + 9 = 0\]. Gọi M là điểm thay đổi trên mặt phẳng (α)sao cho M luôn nhìn đoạn AB dưới một góc vuông. Xác định phương trình đường thẳng MB khi MB đạt giá trị lớn nhất.
Câu 4:
Cho cấp số cộng có số hạng thứ 3 và số hạng thứ 7 lần lượt là 6 và – 2. Tìm số hạng thứ 5.
Câu 5:
Hàm số \[y = {\log _3}\left( {{x^2} - 4x + 3} \right)\] đồng biến trên khoảng nào sau đây
Câu 6:
Gọi S là tập nghiệm của phương trình \[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\] trên \[\mathbb{R}.\] Tổng các phần tử của S bằng
Câu 7:
Cho khối chóp S.ABCD có đáy là hình chữ nhật, \[AB = a\], \[AD = a\sqrt 3 \], SA vuông góc với đáy và mặt phẳng \[\left( {SBC} \right)\] tạo với đáy một góc \[60^\circ \]. Tính thể tích V của khối chóp S.ABCD.
về câu hỏi!