Câu hỏi:

28/06/2022 693 Lưu

Có bao nhiêu giá trị nguyên của m để bất phương trình \[{\log _2}\left( {7{x^2} + 7} \right) \ge {\log _2}\left( {m{x^2} + 4x + m} \right)\] nghiệm đúng với mọi x.

A. 5.                       
B. 4.                       
C. 0.                       
D. 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

\({\log _2}\left( {7{{\rm{x}}^2} + 7} \right) \ge {\log _2}\left( {m{{\rm{x}}^2} + 4{\rm{x}} + m} \right) \Leftrightarrow \left\{ \begin{array}{l}m{{\rm{x}}^2} + 4{\rm{x}} + m > 0\\7{{\rm{x}}^2} + 7 \ge m{{\rm{x}}^2} + 4{\rm{x}} + m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m{{\rm{x}}^2} + 4{\rm{x}} + m > 0\\\left( {7 - m} \right){x^2} - 4{\rm{x}} + 7 - m \ge 0\end{array} \right.\).

Bất phương trình \({\log _2}\left( {7{{\rm{x}}^2} + 7} \right) \ge {\log _2}\left( {m{{\rm{x}}^2} + 4{\rm{x}} + m} \right)\) nghiệm đúng với mọi x khi và chi khi

\(\left\{ \begin{array}{l}m{{\rm{x}}^2} + 4{\rm{x}} + m > 0{\rm{ }}\left( 1 \right)\\\left( {7 - m} \right){x^2} - 4{\rm{x}} + 7 - m \ge 0{\rm{ }}\left( 2 \right)\end{array} \right.\) nghiệm đúng với mọi x thực.

Khi \(m = 0\) thì (1) trở thành \(4{\rm{x}} > 0 \Leftrightarrow x > 0 \Rightarrow m = 0\) không thỏa mãn.

Khi \(m = 7\) thì (2) trở thành \( - 4{\rm{x}} \ge 0 \Leftrightarrow x \le 0 \Rightarrow m = 7\) không thỏa mãn.

Hệ bất phương trình \(\left\{ \begin{array}{l}m{{\rm{x}}^2} + 4{\rm{x}} + m > 0{\rm{ }}\left( 1 \right)\\\left( {7 - m} \right){x^2} - 4{\rm{x}} + 7 - m \ge 0{\rm{ }}\left( 2 \right)\end{array} \right.\) nghiệm đúng với mọi x khi

\(\left\{ \begin{array}{l}m > 0\\4 - {m^2} < 0\\7 - m > 0\\4 - {\left( {7 - m} \right)^2} \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < m < 7\\\left[ \begin{array}{l}m > 2\\m < - 2\end{array} \right.\\\left[ \begin{array}{l}m \ge 9\\m \le 5\end{array} \right.\end{array} \right. \Leftrightarrow 2 < m \le 5\). Do \(m \in \mathbb{Z}\) nên \(m \in \left\{ {3;4;5} \right\}\) nên có 3 giá trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{{a\sqrt 3 }}{2}\]                          
B. \[\frac{{a\sqrt {15} }}{5}\]         
C. \[\frac{{a\sqrt 3 }}{4}\]                                 
D. \[\frac{{a\sqrt {10} }}{5}\]

Lời giải

Đáp án D

Cho hình chóp S.ABCD có các mặt phẳng (SAB) (SAD) cùng một mặt phẳng (ảnh 1)

Gọi M là trung điểm \(A{\rm{D}} \Rightarrow M{\rm{D}} = BC = \frac{{A{\rm{D}}}}{2}\)\(M{\rm{D // BC }} \Rightarrow {\rm{MD}}CB\) là hình bình hành.

 

\( \Rightarrow d\left( {C{\rm{D}};SB} \right) = d\left( {D;(SBM)} \right) = d\left( {A;(SBM)} \right)\)

Gọi \(O = BM \cap AC\). Dễ dàng chứng minh AMCB là hình vuông \( \Rightarrow AC \bot BM\)

 tại  theo giao tuyến SO.

Trong \(\left( {SAO} \right)\), kẻ \(AH \bot {\rm{S}}O \Rightarrow AH \bot \left( {SBM} \right) \Rightarrow AH = d\left( {A;(SBM)} \right)\)

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{O^2}}} = \frac{1}{{A{C^2}}} + \frac{1}{{\frac{{A{C^2}}}{4}}} = \frac{5}{{A{C^2}}} = \frac{5}{{2{a^2}}} \Rightarrow AH = \frac{{a\sqrt {10} }}{5}\).

Câu 2

A. \[C_{25}^5.\]        
B. \[C_{10}^2C_{15}^3.\]                          
C. \[C_{10}^2 + C_{15}^3.\]                 
D. \[A_{10}^2.A_{15}^3.\]

Lời giải

Đáp án B

Chọn ra 2 học sinh nam có \(C_{10}^2\) cách, chọn ra 3 học sinh nữ có \(C_{15}^3\) cách.

Theo quy tắc nhân có \(C_{10}^2.C_{15}^3\) cách để chọn ra 2học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biểu diễn văn nghệ.

Câu 3

A. \[\left( { - 2;2} \right).\]                           
B. \[\left( { - \infty ; + \infty } \right).\]      
C. \[\left( { - \infty ;2} \right).\]                           
D. \[\left( {3; + \infty } \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left\{ {\begin{array}{*{20}{c}}{x = - 2 - t}\\{y = - 2 + 2t}\\{z = 1 + 2t}\end{array}} \right.\]             
B. \[\left\{ {\begin{array}{*{20}{c}}{x = - 2 + 2t}\\{y = - 2 - t}\\{z = 1 + 2t}\end{array}} \right.\]
C. \[\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = - 2}\\{z = 1 + 2t}\end{array}} \right.\]
D. \[\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = - 2 - t}\\{z = 1}\end{array}} \right.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{u_5} = 4.\]        
B. \[{u_5} = - 2.\]      
C. \[{u_5} = 0.\]        
D. \[{u_5} = 2.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[V = {a^3}\]         
B. \[V = \frac{{{a^3}}}{3}\]                       
C. \[V = 3{a^3}\]    
D. \[V = \frac{{\sqrt 3 {a^3}}}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP