Câu hỏi:

28/06/2022 812 Lưu

Cho hình chóp S.ABCD có SA vuông góc với đáy, \[SA = a\sqrt 6 .\] Đáy ABCD là hình thang vuông tại A và \[B,{\mkern 1mu} {\mkern 1mu} AB = BC = \frac{1}{2}AD = a.\] Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp \[S.ECD\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có: \({\rm{CE // AB}} \Rightarrow {\rm{CE}} \bot A{\rm{D}}\)

Mặt khác \(CE \bot {\rm{S}}A \Rightarrow CE \bot \left( {SE{\rm{D}}} \right)\)

Cho hình chóp S.ABCD có SA vuông góc với đáy, SA=a căn 6 Đáy ABCD là hình thang (ảnh 1)

\( \Rightarrow {R_{C.SE{\rm{D}}}} = \sqrt {\frac{{C{E^2}}}{4} + {{\left( {{R_{S{\rm{D}}E}}} \right)}^2}} \)

Lại có \(CE = AB = a,{\rm{ }}\sin \widehat {SE{\rm{A}}} = \sin \widehat {SE{\rm{D}}}\)

\[ = \frac{{SA}}{{SE}} = \frac{{a\sqrt 6 }}{{\sqrt {{a^2} + 6{{\rm{a}}^2}} }} = \frac{{a\sqrt 6 }}{{\sqrt 7 }}\]

\( \Rightarrow {R_{SE{\rm{D}}}} = \frac{{S{\rm{D}}}}{{2\sin \widehat {SE{\rm{D}}}}} = \frac{{a\sqrt {10} }}{{2.\frac{{a\sqrt 6 }}{{\sqrt 7 }}}} = \frac{{a\sqrt {105} }}{6}\)

Vậy \({R_{S.C{\rm{D}}E}} = a\sqrt {\frac{{19}}{6}} \).

Cách 2: Do \(\left( {SE{\rm{D}}} \right) \bot \left( {CE{\rm{D}}} \right) \Rightarrow R = \sqrt {R_1^2 + R_2^2 - \frac{{G{T^2}}}{4}} \) trong đó \({R_1} = {R_{SE{\rm{D}}}} = \frac{{a\sqrt {105} }}{6}\),

\({R_2} = {R_{CE{\rm{D}}}} = \frac{{C{\rm{D}}}}{2} = \frac{{a\sqrt 2 }}{2}\)\(GT = E{\rm{D}} = a \Rightarrow R = a\sqrt {\frac{{19}}{6}} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Cho hình chóp S.ABCD có các mặt phẳng (SAB) (SAD) cùng một mặt phẳng (ảnh 1)

Gọi M là trung điểm \(A{\rm{D}} \Rightarrow M{\rm{D}} = BC = \frac{{A{\rm{D}}}}{2}\)\(M{\rm{D // BC }} \Rightarrow {\rm{MD}}CB\) là hình bình hành.

 

\( \Rightarrow d\left( {C{\rm{D}};SB} \right) = d\left( {D;(SBM)} \right) = d\left( {A;(SBM)} \right)\)

Gọi \(O = BM \cap AC\). Dễ dàng chứng minh AMCB là hình vuông \( \Rightarrow AC \bot BM\)

 tại  theo giao tuyến SO.

Trong \(\left( {SAO} \right)\), kẻ \(AH \bot {\rm{S}}O \Rightarrow AH \bot \left( {SBM} \right) \Rightarrow AH = d\left( {A;(SBM)} \right)\)

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{O^2}}} = \frac{1}{{A{C^2}}} + \frac{1}{{\frac{{A{C^2}}}{4}}} = \frac{5}{{A{C^2}}} = \frac{5}{{2{a^2}}} \Rightarrow AH = \frac{{a\sqrt {10} }}{5}\).

Câu 2

Lời giải

Đáp án B

Chọn ra 2 học sinh nam có \(C_{10}^2\) cách, chọn ra 3 học sinh nữ có \(C_{15}^3\) cách.

Theo quy tắc nhân có \(C_{10}^2.C_{15}^3\) cách để chọn ra 2học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biểu diễn văn nghệ.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP