Câu hỏi:

28/06/2022 751 Lưu

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {1;6} \right]\] và thỏa mãn \[f\left( x \right) = \frac{{f\left( {2\sqrt {x + 3} - 3} \right)}}{{\sqrt {x + 3} }} + \frac{x}{{\sqrt {x + 3} }}.\] Tính tích phân của \[I = \int\limits_3^6 {f\left( x \right){\rm{d}}x} \]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Theo giả thiết ta có: \(f\left( x \right) = \frac{{f\left( {2\sqrt {x + 3} - 3} \right)}}{{\sqrt {x + 3} }} + \frac{x}{{\sqrt {x + 3} }}\)

Lấy tích phân hai vế cận từ 1 đến 6 ta được: \(\int\limits_1^6 {f\left( x \right)d{\rm{x}}} = \int\limits_1^6 {\frac{{f\left( {2\sqrt {x + 3} - 3} \right)}}{{\sqrt {x + 3} }}d{\rm{x}}} + \int\limits_1^6 {\frac{{x{\rm{dx}}}}{{\sqrt {x + 3} }}} \)

\( \Leftrightarrow \int\limits_1^6 {f\left( x \right)d{\rm{x}}} = \int\limits_1^6 {f\left( {2\sqrt {x + 3} - 3} \right)d\left( {2\sqrt {x + 3} - 3} \right)} + \frac{{20}}{3}\) (Casio ta được \(\int\limits_1^6 {\frac{{x{\rm{dx}}}}{{\sqrt {x + 3} }}} = \frac{{20}}{3}\))

\( \Leftrightarrow \int\limits_1^6 {f\left( x \right)d{\rm{x}}} = \int\limits_1^3 {f\left( u \right)du} + \frac{{20}}{3} \Leftrightarrow \int\limits_1^6 {f\left( x \right)d{\rm{x}}} = \int\limits_1^3 {f\left( x \right)d{\rm{x}}} + \frac{{20}}{3}\)

Do đó \(I = \int\limits_3^6 {f\left( x \right)dx} = \frac{{20}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Cho hình chóp S.ABCD có các mặt phẳng (SAB) (SAD) cùng một mặt phẳng (ảnh 1)

Gọi M là trung điểm \(A{\rm{D}} \Rightarrow M{\rm{D}} = BC = \frac{{A{\rm{D}}}}{2}\)\(M{\rm{D // BC }} \Rightarrow {\rm{MD}}CB\) là hình bình hành.

 

\( \Rightarrow d\left( {C{\rm{D}};SB} \right) = d\left( {D;(SBM)} \right) = d\left( {A;(SBM)} \right)\)

Gọi \(O = BM \cap AC\). Dễ dàng chứng minh AMCB là hình vuông \( \Rightarrow AC \bot BM\)

 tại  theo giao tuyến SO.

Trong \(\left( {SAO} \right)\), kẻ \(AH \bot {\rm{S}}O \Rightarrow AH \bot \left( {SBM} \right) \Rightarrow AH = d\left( {A;(SBM)} \right)\)

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{O^2}}} = \frac{1}{{A{C^2}}} + \frac{1}{{\frac{{A{C^2}}}{4}}} = \frac{5}{{A{C^2}}} = \frac{5}{{2{a^2}}} \Rightarrow AH = \frac{{a\sqrt {10} }}{5}\).

Câu 2

Lời giải

Đáp án B

Chọn ra 2 học sinh nam có \(C_{10}^2\) cách, chọn ra 3 học sinh nữ có \(C_{15}^3\) cách.

Theo quy tắc nhân có \(C_{10}^2.C_{15}^3\) cách để chọn ra 2học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biểu diễn văn nghệ.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP