Câu hỏi:

28/06/2022 319

Cho hàm số \[f\left( x \right) = 2019\left( {{e^{2x}} - {e^{ - 2x}}} \right) + 2020\ln \left( {x + \sqrt {{x^2} + 1} } \right) + 2021{x^3}\]. Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[f\left( {\left| {3{x^2} + m} \right|} \right) + f\left( {{x^3} - 12} \right) \le 0\] có nghiệm đúng với mọi \[x \in \left[ { - 2;1} \right]\].

Đáp án chính xác

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có \(f'\left( x \right) = 4038\left( {{e^{2x}} + {e^{ - 2x}}} \right) + \frac{{2020}}{{\sqrt {{x^2} + 1} }} + 6063{x^2} > 0,\forall x \in \left[ { - 2;1} \right]\)

\(f\left( { - x} \right) = - f\left( x \right)\). Suy ra:

\(f\left( {\left| {3{x^2} + m} \right|} \right) + f\left( {{x^3} - 12} \right) \le 0 \Leftrightarrow f\left( {\left| {3{x^2} + m} \right|} \right) \le - f\left( {{x^3} - 12} \right) = f\left( {12 - {x^3}} \right),\forall x \in \left[ { - 2;1} \right]\)

\( \Leftrightarrow \left| {3{x^2} + m} \right| \le 12 - {x^3} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3{x^2} + m \ge {x^3} - 12}\\{3{x^2} + m \le 12 - {x^3}}\end{array}} \right.\) ngiệm đúng với mọi \(x \in \left[ { - 2;1} \right]\).

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge {x^3} - 3{x^2} - 12 = g\left( x \right)}\\{m \le - {x^3} - 3{x^2} + 12 = h\left( x \right)}\end{array}} \right.,\forall x \in \left[ { - 2;1} \right]\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge \mathop {{\rm{max}}}\limits_{\left[ { - 2;1} \right]} g\left( x \right) = g\left( 0 \right) = - 12}\\{m \le \mathop {\min }\limits_{\left[ { - 2;1} \right]} h\left( x \right) = h\left( 1 \right) = h\left( { - 2} \right) = 8}\end{array}} \right. \Rightarrow - 12 \le m \le 8\].

Vậy có 21 giá trị nguyên của m thỏa mãn yêu cầu.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có các mặt phẳng \[\left( {SAB} \right),\left( {SAD} \right)\] cùng vuông góc với mặt phẳng \[\left( {ABCD} \right)\], đáy là hình thang vuông tại các đỉnh A và B, có \[AD = 2AB = 2BC = 2a\], \[SA = AC\]. Khoảng cách giữa hai đường thẳng SB và CD bằng:

Xem đáp án » 28/06/2022 5,316

Câu 2:

Từ một nhóm có 10 học sinh nam và 15 học sinh nữ. Hỏi có bao nhiêu cách chọn ra 2 học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biễu diễn văn nghệ

Xem đáp án » 28/06/2022 4,977

Câu 3:

Trong không gian với hệ tọa độ Oxyz  cho hai điểm \[A(1;2; - 3),B( - 2; - 2;1)\] và mặt phẳng \[(\alpha ):2x + 2y - z + 9 = 0\]. Gọi M là điểm thay đổi trên mặt phẳng (α)sao cho M luôn nhìn đoạn AB dưới một góc vuông. Xác định phương trình đường thẳng MB khi MB đạt giá trị lớn nhất.

Xem đáp án » 28/06/2022 2,464

Câu 4:

Hàm số \[y = {\log _3}\left( {{x^2} - 4x + 3} \right)\] đồng biến trên khoảng nào sau đây

Xem đáp án » 28/06/2022 1,971

Câu 5:

Cho cấp số cộng có số hạng thứ 3 và số hạng thứ 7 lần lượt là 6 và – 2. Tìm số hạng thứ 5.

Xem đáp án » 28/06/2022 1,866

Câu 6:

Trong khôn gian tọa độ Oxyz, cho mặt cầu \[\left( S \right):\;{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{14}}{3}\] và đường thẳng \[d:\;\frac{{x - 1}}{3} = \frac{{y - 2}}{2} = \frac{{z - 3}}{1}.\] Gọi \[A\left( {{x_0};{y_0};{z_0}} \right)\;\left( {{x_0} > 0} \right)\] là điểm thuộc d sao cho từ A ta kẻ được ba tiếp tuyến đến mặt cầu (S) và các tiếp điểm \[B,\;C,\;D\] sao cho ABCD là tứ diện đều. Tính độ dài đoạn \[OA.\]

Xem đáp án » 28/06/2022 1,021

Câu 7:

Gọi S là tập nghiệm của phương trình \[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\] trên \[\mathbb{R}.\] Tổng các phần tử của S bằng

Xem đáp án » 28/06/2022 972
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua