Câu hỏi:

28/06/2022 742 Lưu

Trong không gian với hệ tọa độ Oxyz  cho tam giác ABC biết \[A(2;1;0),B(3;0;2),C(4;3; - 4)\]. Viết phương trình đường phân giác trong góc A.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có \(\overrightarrow {AB} = \left( {1; - 1;2} \right) \Rightarrow \overrightarrow {{i_{AB}}} = \frac{1}{{\left| {\overrightarrow {AB} } \right|}}.\overrightarrow {AB} = \left( {\frac{1}{{\sqrt 6 }}; - \frac{1}{{\sqrt 6 }};\frac{2}{{\sqrt 6 }}} \right)\). Gọi E thỏa mãn \(\overrightarrow {{i_{AB}}} = \overrightarrow {A{\rm{E}}} \)

\(\overrightarrow {AC} = \left( {2;2; - 4} \right) \Rightarrow \overrightarrow {{i_{AC}}} = \frac{1}{{\left| {\overrightarrow {AC} } \right|}}.\overrightarrow {AC} = \left( {\frac{1}{{\sqrt 6 }};\frac{1}{{\sqrt 6 }}; - \frac{2}{{\sqrt 6 }}} \right)\). Gọi F thỏa mãn \(\overrightarrow {{i_{AC}}} = \overrightarrow {AF} \)

Do đó \(\overrightarrow {AM} = \overrightarrow {A{\rm{E}}} + \overrightarrow {AF} = \left( {\frac{2}{{\sqrt 6 }};0;0} \right) = \frac{2}{{\sqrt 6 }}\left( {1;0;0} \right)\) (với AEMF là hình bình hành)

Mặt khác: nên AEMF là hình thoi chính là \( \Rightarrow \overrightarrow {AM} \) VTCP của đường phân giác trong góc A. Ta chọn \(\overrightarrow {{u_1}} = \left( {1;0;0} \right)\) làm VTCP của phân giác trong góc A.

Đường thẳng phân giác trong góc A qua A có phương trình là \(\left\{ \begin{array}{l}x = 2 + t\\y = 1\\z = 0\end{array} \right.,\left( {t \in \mathbb{R}} \right)\).  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Cho hình chóp S.ABCD có các mặt phẳng (SAB) (SAD) cùng một mặt phẳng (ảnh 1)

Gọi M là trung điểm \(A{\rm{D}} \Rightarrow M{\rm{D}} = BC = \frac{{A{\rm{D}}}}{2}\)\(M{\rm{D // BC }} \Rightarrow {\rm{MD}}CB\) là hình bình hành.

 

\( \Rightarrow d\left( {C{\rm{D}};SB} \right) = d\left( {D;(SBM)} \right) = d\left( {A;(SBM)} \right)\)

Gọi \(O = BM \cap AC\). Dễ dàng chứng minh AMCB là hình vuông \( \Rightarrow AC \bot BM\)

 tại  theo giao tuyến SO.

Trong \(\left( {SAO} \right)\), kẻ \(AH \bot {\rm{S}}O \Rightarrow AH \bot \left( {SBM} \right) \Rightarrow AH = d\left( {A;(SBM)} \right)\)

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{O^2}}} = \frac{1}{{A{C^2}}} + \frac{1}{{\frac{{A{C^2}}}{4}}} = \frac{5}{{A{C^2}}} = \frac{5}{{2{a^2}}} \Rightarrow AH = \frac{{a\sqrt {10} }}{5}\).

Câu 2

Lời giải

Đáp án B

Chọn ra 2 học sinh nam có \(C_{10}^2\) cách, chọn ra 3 học sinh nữ có \(C_{15}^3\) cách.

Theo quy tắc nhân có \(C_{10}^2.C_{15}^3\) cách để chọn ra 2học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biểu diễn văn nghệ.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP