Cho hàm số f(x) liên tục trên đoạn \[\left[ {\frac{\pi }{4};\frac{\pi }{3}} \right]\] thỏa mãn \[f'\left( x \right).\sin 2x = 1 + 2.f\left( x \right)\] với \[\forall x \in \left[ {\frac{\pi }{4};\frac{\pi }{3}} \right]\] và \[f\left( {\frac{\pi }{4}} \right) = 1.\] Tích phân \[I = \int\limits_0^{\frac{\pi }{3}} {f\left( x \right)dx} \] bằng
Quảng cáo
Trả lời:
Đáp án A
Ta có
\({\left[ {\frac{{f\left( x \right)}}{{\tan x}}} \right]^\prime } = \frac{{f'\left( x \right).\tan x - f\left( x \right).\frac{1}{{{{\cos }^2}x}}}}{{{{\tan }^2}x}} = \frac{{f'\left( x \right).\sin x\cos x - f\left( x \right)}}{{{{\sin }^2}x}}\)
\( = \frac{{f'\left( x \right).\sin 2x - 2.f\left( x \right)}}{{2{{\sin }^2}x}} = \frac{1}{{2{{\sin }^2}x}} \Rightarrow \frac{{f\left( x \right)}}{{\tan x}} = \mathop \smallint \nolimits^ \frac{1}{{2{{\sin }^2}x}}dx = - \frac{1}{2}\cot x + C.\)
Bài ra
\(f\left( {\frac{\pi }{4}} \right) = 1 \Rightarrow C = \frac{3}{2} \Rightarrow f\left( x \right) = \tan x\left( { - \frac{1}{2}\cot x + \frac{3}{2}} \right) = - \frac{1}{2} + \frac{3}{2}.\frac{{\sin x}}{{\cos x}}\)
\( \Rightarrow \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {f\left( x \right)dx} = \left( { - \frac{1}{2}x - \frac{3}{2}\ln \left| {\cos x} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle\frac{\pi }{4}}^{\scriptstyle\frac{\pi }{3}\atop\scriptstyle}} \right. = - \frac{\pi }{6} - \frac{3}{2}\ln \frac{1}{2} + \frac{\pi }{8} + \frac{3}{2}\ln \frac{1}{{\sqrt 2 }} = - \frac{\pi }{{24}} + \frac{3}{4}\ln 2.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Ta có \({u_6} = {u_1}{q^5} \Rightarrow \frac{3}{{32}} = 3{q^5} \Rightarrow q = \frac{1}{2}.\)
Lời giải
Đáp án D
Ta có \(\int {\frac{1}{{4x + 1}}dx} = \frac{1}{4}\ln \left| {4x + 1} \right| + C.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.