Câu hỏi:
24/07/2022 240Cho hàm số f(x) liên tục trên đoạn \[\left[ {\frac{\pi }{4};\frac{\pi }{3}} \right]\] thỏa mãn \[f'\left( x \right).\sin 2x = 1 + 2.f\left( x \right)\] với \[\forall x \in \left[ {\frac{\pi }{4};\frac{\pi }{3}} \right]\] và \[f\left( {\frac{\pi }{4}} \right) = 1.\] Tích phân \[I = \int\limits_0^{\frac{\pi }{3}} {f\left( x \right)dx} \] bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A
Ta có
\({\left[ {\frac{{f\left( x \right)}}{{\tan x}}} \right]^\prime } = \frac{{f'\left( x \right).\tan x - f\left( x \right).\frac{1}{{{{\cos }^2}x}}}}{{{{\tan }^2}x}} = \frac{{f'\left( x \right).\sin x\cos x - f\left( x \right)}}{{{{\sin }^2}x}}\)
\( = \frac{{f'\left( x \right).\sin 2x - 2.f\left( x \right)}}{{2{{\sin }^2}x}} = \frac{1}{{2{{\sin }^2}x}} \Rightarrow \frac{{f\left( x \right)}}{{\tan x}} = \mathop \smallint \nolimits^ \frac{1}{{2{{\sin }^2}x}}dx = - \frac{1}{2}\cot x + C.\)
Bài ra
\(f\left( {\frac{\pi }{4}} \right) = 1 \Rightarrow C = \frac{3}{2} \Rightarrow f\left( x \right) = \tan x\left( { - \frac{1}{2}\cot x + \frac{3}{2}} \right) = - \frac{1}{2} + \frac{3}{2}.\frac{{\sin x}}{{\cos x}}\)
\( \Rightarrow \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {f\left( x \right)dx} = \left( { - \frac{1}{2}x - \frac{3}{2}\ln \left| {\cos x} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle\frac{\pi }{4}}^{\scriptstyle\frac{\pi }{3}\atop\scriptstyle}} \right. = - \frac{\pi }{6} - \frac{3}{2}\ln \frac{1}{2} + \frac{\pi }{8} + \frac{3}{2}\ln \frac{1}{{\sqrt 2 }} = - \frac{\pi }{{24}} + \frac{3}{4}\ln 2.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.
Câu 2:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\] là
Câu 3:
Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).
Câu 4:
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng
Câu 5:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]
Câu 6:
Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]
Câu 7:
Cho hàm số \[y = {x^3} + mx - \frac{1}{{5{x^5}}}\]. Có bao nhiêu giá trị nguyên âm của tham số m để hàm số đồng biến trên khoảng \[\left( {0;{\mkern 1mu} + \infty } \right)\]?
về câu hỏi!