Câu hỏi:

24/07/2022 183 Lưu

Cho hàm số \[y = f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có bảng biến thiên như sau:

Cho hàm số y=f(x). Hàm số y=f'(x) có bảng biến thiên như sau (ảnh 1)

Bất phương trình \[f\left( x \right) > \sqrt {{x^2} + {\rm{e}}} + m\] có nghiệm với mọi \[x \in \left( { - 3;0} \right)\] khi và chỉ khi

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Xét hàm số

\(g\left( x \right) = f\left( x \right) - \sqrt {{x^2} + e} ;{\rm{\;}}x \in \left( { - 3;0} \right) \Rightarrow g'\left( x \right) = f'\left( x \right) - \frac{x}{{\sqrt {{x^2} + e} }}.\)

Với mọi \(x \in \left( { - 3;0} \right)\) thì \(f'\left( x \right) > 0;{\rm{\;}}\frac{{ - x}}{{\sqrt {{x^2} + e} }} > 0 \Rightarrow g'\left( x \right) > 0,\forall x \in \left( { - 3;0} \right)\)

\( \Rightarrow g\left( x \right)\) đồng biến trên \(\left( { - 3;0} \right).\)

Khi đó \(m < g\left( x \right)\) có nghiệm với \(\forall x \in \left( { - 3;0} \right) \Leftrightarrow m \le g\left( 0 \right) \Leftrightarrow m \le f\left( 0 \right) - \sqrt e .\)  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Ta có \({u_6} = {u_1}{q^5} \Rightarrow \frac{3}{{32}} = 3{q^5} \Rightarrow q = \frac{1}{2}.\)

Câu 2

Lời giải

Đáp án D

Ta có \(\int {\frac{1}{{4x + 1}}dx} = \frac{1}{4}\ln \left| {4x + 1} \right| + C.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP