Câu hỏi:
24/07/2022 221Cho hàm số f(x) liên tục trên khoảng \[\left( {0; + \infty } \right)\] thỏa mãn \[f\left( 1 \right) = 1\] và \[f'\left( x \right) \ge x + \frac{1}{x},{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right)\]. Tìm giá trị nhỏ nhất của \[f\left( 2 \right)\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Từ \(f'\left( x \right) \ge x + \frac{1}{x},{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {0; + \infty } \right) \Rightarrow \mathop \smallint \limits_1^2 f'\left( x \right){\mkern 1mu} dx \ge \mathop \smallint \limits_1^2 \left( {x + \frac{1}{x}} \right){\mkern 1mu} dx\)
\( \Rightarrow f\left( x \right)\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. \ge \left( {\frac{{{x^2}}}{2} + \ln \left| x \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. \Rightarrow f\left( 2 \right) - f\left( 1 \right) \ge \frac{3}{2} + \ln 2 \Rightarrow f\left( 2 \right) \ge \frac{5}{2} + 1\)
Dấu “=” xảy ra \( \Leftrightarrow f'\left( x \right) = x + \frac{1}{x}{\rm{\;}}(x > 0)\) nên \(f\left( x \right) = \frac{{{x^2}}}{2} + \ln x + C.\)
Mà \(f\left( 1 \right) = 1 \Rightarrow \frac{1}{2} + C = 1 \Rightarrow C = \frac{1}{2} \Rightarrow f\left( x \right) = \frac{{{x^2}}}{2} + \ln x + \frac{1}{2}.\)
Vậy giá trị nhỏ nhất của \(f\left( 2 \right)\) bằng \(\frac{5}{2} + \ln 2,\) đạt được khi \(f\left( x \right) = \frac{{{x^2}}}{2} + \ln x + \frac{1}{2}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.
Câu 2:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\] là
Câu 3:
Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).
Câu 4:
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng
Câu 5:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]
Câu 6:
Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]
Câu 7:
Cho hàm số \[y = {x^3} + mx - \frac{1}{{5{x^5}}}\]. Có bao nhiêu giá trị nguyên âm của tham số m để hàm số đồng biến trên khoảng \[\left( {0;{\mkern 1mu} + \infty } \right)\]?
về câu hỏi!