Câu hỏi:
24/07/2022 324Biết rằng \[\int\limits_0^1 {\frac{{x - 1}}{{{x^2} + 3x + 2}}dx} = a\ln 2 + b\ln 3,\] với \[a,{\rm{ }}b \in \mathbb{Z}.\] Tính \[S = {a^3} + {b^3}.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Phân tích
\(\frac{{x - 1}}{{{x^2} + 3x + 2}} = \frac{{x - 1}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \frac{m}{{x + 1}} + \frac{n}{{x + 2}} \Rightarrow x - 1 = m\left( {x + 2} \right) + n\left( {x + 1} \right).\)
Cho
\(\left\{ \begin{array}{l}x = - 1 \Rightarrow m = - 2\\x = - 2 \Rightarrow n = 3\end{array} \right. \Rightarrow \int\limits_0^1 {\frac{{x - 1}}{{{x^2} + 3x + 2}}} dx = \int\limits_0^1 {\left( {\frac{3}{{x + 2}} - \frac{2}{{x + 1}}} \right)dx} = 3\ln \left| {x + 2} \right|\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right.\)
\( \Rightarrow I = \left( {3\ln 3 - 3\ln 2} \right) - 2\ln 2 = 3\ln 3 - 5\ln 2 \Rightarrow a = - 5,b = 3 \Rightarrow S = - 98\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số nhân \[\left( {{u_n}} \right)\] với \[{u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\] Tìm q.
Câu 2:
Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{4x + 1}}\] là
Câu 3:
Cho hình nón (N) có bán kính đáy bằng 3 và đường sinh bằng 5. Tính thể tích V của khối nón (N).
Câu 4:
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \] bằng
Câu 5:
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 3 = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}.\] Mặt phẳng \[\left( Q \right):ax + by + cz - 4 = 0\] chứa đường thẳng d và vuông góc với mặt phẳng (P). Tính \[a + b + c.\]
Câu 6:
Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả các phần tử của \[S.\]
Câu 7:
Cho hàm số \[y = {x^3} + mx - \frac{1}{{5{x^5}}}\]. Có bao nhiêu giá trị nguyên âm của tham số m để hàm số đồng biến trên khoảng \[\left( {0;{\mkern 1mu} + \infty } \right)\]?
về câu hỏi!