Câu hỏi:
28/06/2022 111Cho hình lăng trụ tam giác đều \[ABC.A'B'C'\] có \[AB = 2a,AA' = a\sqrt 3 .\] Tính thể tích V của khối lăng trụ \[ABC.A'B'C'\]theo a?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Áp dụng công thức tính thể tích lăng trụ: \(V = B.h\) trong đó: V là thể tích lăng trụ, B là diện tích đáy của lăng trụ, h là chiều cao của lăng trụ.
Cách giải:
Diện tích tam giác đều ABC cao cạnh 2a là:
\({S_{\Delta ABC}} = \frac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \).
Thể tích lăng trụ là:
\({V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = {a^2}\sqrt 3 .a\sqrt 3 = 3{a^3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].
Câu 2:
Cho hàm số \[y = f\left( x \right)\] là hàm số bậc ba có bảng biến thiên như hình vẽ
Số đường tiệm cận đứng và ngang của đồ thị hàm số \[y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\] là
Câu 3:
Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]
Câu 4:
Biết \[\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx = a\ln \left| {x - 1} \right|} + b\ln \left| {x - 2} \right| + C,\left( {a,b \in \mathbb{R}} \right).\] Tính giá trị của biểu thức \[a + b\].
Câu 5:
Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng
Câu 6:
Biết giá trị lớn nhất của hàm số \[y = f\left( x \right) = \left| {2{x^3} - 15x + m - 5} \right| + 9x\] trên \[\left[ {0;3} \right]\] bằng 60. Tính tổng tất cả các giá trị của tham số thực m.
Câu 7:
Xét số phức R thỏa mãn \[\frac{{z + 2}}{{z - 2i}}\] là số thuần ảo. Biết rằng tập hợp các điểm biểu diễn các số phức R luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng
về câu hỏi!