Câu hỏi:

28/06/2022 496

Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với góc \[{60^0}.\] Gọi M là trung điểm của SC. Mặt phẳng qua AM và song song với BD, cắt \[SB,SD\] lần lượt tại E và F và chia khối chóp thành hai phần. Tính thể tích V của khối chóp không chứa đỉnh S.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a (ảnh 1)

+) Gọi \(O = AC \cap BD,{\rm{ }}G = AM \cap SO\)

Þ G là trọng tâm \(\Delta SAC \Rightarrow \frac{{SG}}{{SO}} = \frac{2}{3}\).

+) Ta có: \(\left( {\widehat {SC;\left( {ABCD} \right)}} \right) = \left( {\widehat {SC;OC}} \right) = \widehat {SCO} = 60^\circ \)

\(OC = \frac{1}{2}.AC = \frac{{a\sqrt 2 }}{2},{\rm{ }}SO = OC.\tan \widehat {SCO} = \frac{{a\sqrt 2 }}{2}\tan 60^\circ = \frac{{a\sqrt 6 }}{2}\)

\( \Rightarrow {V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{{a\sqrt 6 }}{2}.{a^2} = \frac{{{a^3}\sqrt 6 }}{3}\).

+) Gọi \(\left( \alpha \right)\) là mặt phẳng chứa AM và song song với BD Þ \(\left( \alpha \right)\) là mặt phẳng đi qua G và song song với BD và cắt SB, SD lần lượt tại EF. Do đó \(\left( \alpha \right)\) cắt hình chóp S.ABCD theo thiết diện là tứ giác AEMF Þ \(\left( \alpha \right)\) chia khối chóp S.ABCD thành hai phần là khối chóp S.AEMF và khối đa diện EMFABCD.

+) Ta có EF đi qua G\(EF//BD \Rightarrow \frac{{SE}}{{SB}} = \frac{{SF}}{{SD}} = \frac{{SG}}{{SO}} = \frac{2}{3}\).

+) \(\frac{{{V_{S.AEF}}}}{{{V_{S.ABD}}}} = \frac{{SE}}{{SB}}.\frac{{SF}}{{SD}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9} \Rightarrow {V_{S.ABD}} = \frac{2}{9}{V_{S.ABCD}}\)

+) \(\frac{{{V_{S.EFM}}}}{{{V_{S.BCD}}}} = \frac{{SE}}{{SB}}.\frac{{SF}}{{SD}}.\frac{{SM}}{{SC}} = \frac{2}{3}.\frac{2}{3}.\frac{1}{2} = \frac{2}{9} \Rightarrow {V_{S.EFM}} = \frac{2}{9}{V_{S.BCD}} = \frac{1}{9}{V_{S.ABCD}}\)

+ Ta có: \({V_{S.AEMF}} = {V_{S.AEF}} + {V_{S.EFM}} = \frac{1}{3}{V_{S.ABCD}}\)

Þ Thể tích khối chóp không chứa đỉnh S là:

\(V = {V_{S.ABCD}} - {V_{S.AEMF}} = \frac{2}{3}{V_{S.ABCD}} = \frac{2}{3}.\frac{{{a^3}\sqrt 6 }}{6} = \frac{{{a^3}\sqrt 6 }}{9}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].

Lời giải

Đáp án D

Đặt \(2x = t \Rightarrow J = \int\limits_0^4 {f\left( t \right)d\left( {\frac{t}{2}} \right) = \frac{1}{2}\int\limits_0^4 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^4 {f\left( x \right)dx} = \frac{1}{2}.32 = 16} \).

Lời giải

Đáp án A

\(\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} = \int {\frac{{ - 2\left( {x - 2} \right) + 3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} \)

                        \( = \int {\left( {\frac{{ - 2}}{{x - 1}} + \frac{3}{{x - 2}}} \right)dx} \)

                        \( = - 2\ln \left| {x - 1} \right| + 3\ln \left| {x - 2} \right| + C\)

\( \Rightarrow a = - 2,{\rm{ }}b = 3 \Rightarrow a + b = 1\)

Câu 3

Diện tích hình phẳng giới hạn bởi đồ thị hàm số bậc ba \[y = f\left( x \right)\] và các trục tọa độ là \[S = 32\] (hình vẽ bên). Tính thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng trên quanh trục \[Ox.\]

Diện tích hình phẳng giới hạn bởi đồ thị hàm số bậc ba  y=f(x) (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay