Câu hỏi:
28/06/2022 160Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \[\vec a = \left( { - 2; - 3;1} \right),\vec b = \left( {1;0;1} \right).\] Tính \[\cos \left( {\vec a,\vec b} \right).\]
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án A
Ta có: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 2.1 + \left( { - 3} \right).0 + 1.1}}{{\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 3} \right)}^2} + {1^2}} .\sqrt {{1^2} + {0^2} + {1^2}} }} = \frac{{ - 1}}{{2\sqrt 7 }}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].
Câu 2:
Cho hàm số \[y = f\left( x \right)\] là hàm số bậc ba có bảng biến thiên như hình vẽ
Số đường tiệm cận đứng và ngang của đồ thị hàm số \[y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\] là
Câu 3:
Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]
Câu 4:
Biết \[\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx = a\ln \left| {x - 1} \right|} + b\ln \left| {x - 2} \right| + C,\left( {a,b \in \mathbb{R}} \right).\] Tính giá trị của biểu thức \[a + b\].
Câu 5:
Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng
Câu 6:
Biết giá trị lớn nhất của hàm số \[y = f\left( x \right) = \left| {2{x^3} - 15x + m - 5} \right| + 9x\] trên \[\left[ {0;3} \right]\] bằng 60. Tính tổng tất cả các giá trị của tham số thực m.
Câu 7:
Xét số phức R thỏa mãn \[\frac{{z + 2}}{{z - 2i}}\] là số thuần ảo. Biết rằng tập hợp các điểm biểu diễn các số phức R luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng
về câu hỏi!