Câu hỏi:
28/06/2022 111Đồ thị hàm số \[y = {x^3} - 2m{x^2} + {m^2}x + n\] có tọa độ điểm cực tiểu là \[\left( {1;3} \right)\]. Khi đó \[m + n\] bằng:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án A
Ta có: \(y' = 3{x^2} - 4mx + {m^2}\)
Đồ thị hàm số có điểm cực tiểu là \(\left( {1;3} \right) \Rightarrow \left\{ \begin{array}{l}y'\left( 1 \right) = 0\\y\left( 1 \right) = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 - 4m + {m^2} = 0\\1 - 2m + {m^2} + n = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m = 3\end{array} \right.\\n = - {m^2} + 2m + 2\end{array} \right.\)
\(m = 1 \Rightarrow n = 3\) ta được hàm số \(y = {x^3} - 2{x^2} + x + 3\)
\(y' = 3{x^2} - 4x + 1 \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{1}{3}\end{array} \right.\)
Lập trục xét dấu của \(y'\) ta suy ra \(x = 1\) là điểm cực tiểu của hàm số.
Vậy \(\left\{ \begin{array}{l}m = 1\\m = 3\end{array} \right.\) thỏa mãn \( \Rightarrow m + n = 4\).
\(m = 3 \Rightarrow n = - 1\) ta được hàm số \(y = {x^3} - 6{x^2} + 9x - 1\)
\(y' = 3{x^2} - 12x + 9 \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)
Lập trục xét dấu của \(y'\) ta suy ra \(x = 1\) là điểm cực đại của hàm số.
Vậy \(\left\{ \begin{array}{l}m = 3\\n = - 1\end{array} \right.\) không thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].
Câu 2:
Cho hàm số \[y = f\left( x \right)\] là hàm số bậc ba có bảng biến thiên như hình vẽ
Số đường tiệm cận đứng và ngang của đồ thị hàm số \[y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\] là
Câu 3:
Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]
Câu 4:
Biết \[\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx = a\ln \left| {x - 1} \right|} + b\ln \left| {x - 2} \right| + C,\left( {a,b \in \mathbb{R}} \right).\] Tính giá trị của biểu thức \[a + b\].
Câu 5:
Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng
Câu 6:
Biết giá trị lớn nhất của hàm số \[y = f\left( x \right) = \left| {2{x^3} - 15x + m - 5} \right| + 9x\] trên \[\left[ {0;3} \right]\] bằng 60. Tính tổng tất cả các giá trị của tham số thực m.
Câu 7:
Xét số phức R thỏa mãn \[\frac{{z + 2}}{{z - 2i}}\] là số thuần ảo. Biết rằng tập hợp các điểm biểu diễn các số phức R luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng
về câu hỏi!