Cho 2 đường thẳng \[{d_1}:\frac{x}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{1}\] và \[{d_2}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 2}}{{ - 1}}.\] Phương trình đường thẳng qua \[A\left( {2;1; - 1} \right)\] và vuông góc với cả \[{d_1};{d_2}\] là
Quảng cáo
Trả lời:
Đáp án D
Gọi \[d\] là đường thẳng cần tìm, gọi \[\left\{ \begin{array}{l}A = d \cap {d_1}\\B = d \cap {d_2}\end{array} \right.\].
+ \[{d_1}:\left\{ \begin{array}{l}x = a\\y = - 2a\\z = 1 + a\end{array} \right. \Rightarrow A\left( {a; - 2a;a + 1} \right)\]; \[{d_2}:\left\{ \begin{array}{l}x = 1 + 2b\\y = b\\z = - 2 - b\end{array} \right. \Rightarrow B\left( {2b + 1;b; - b - 2} \right)\]
+ \[d\] nhận \[\overrightarrow {AB} = \left( {2b - a + 1;2a + b; - a - b - 3} \right)\] là một VTCP.
Mà \[d \bot {d_1},{\rm{ }}d \bot {d_2}\] và \[\overrightarrow {{u_{{d_1}}}} = \left( {1; - 2;1} \right),{\rm{ }}\overrightarrow {{u_{{d_2}}}} = \left( {2;1; - 1} \right)\] nên \[\left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {{u_{{d_1}}}} = 0\\\overrightarrow {AB} .\overrightarrow {{u_{{d_2}}}} = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left( {2b - a + 1} \right) - 2\left( {2a + b} \right) - \left( { - a - b - 3} \right) = 0\\2\left( {2b - a + 1} \right) + \left( {2a + b} \right) - \left( { - a - b - 3} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 6a - b = 2\\a + 6b = - 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{5}\\b = - \frac{4}{5}\end{array} \right.\]
\[ \Rightarrow \overrightarrow {AB} = \left( { - \frac{2}{5}; - \frac{6}{5}; - 2} \right) \Rightarrow d\] nhận \[\overrightarrow u = \left( {1;3;5} \right)\] là một VTCP.
Mà \[d\] qua \[A\left( {2;1; - 1} \right) \Rightarrow d:\frac{{x - 2}}{1} = \frac{{y - 1}}{3} = \frac{{z + 1}}{5}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Đặt \(2x = t \Rightarrow J = \int\limits_0^4 {f\left( t \right)d\left( {\frac{t}{2}} \right) = \frac{1}{2}\int\limits_0^4 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^4 {f\left( x \right)dx} = \frac{1}{2}.32 = 16} \).
Lời giải
Đáp án A
\(\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} = \int {\frac{{ - 2\left( {x - 2} \right) + 3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} \)
\( = \int {\left( {\frac{{ - 2}}{{x - 1}} + \frac{3}{{x - 2}}} \right)dx} \)
\( = - 2\ln \left| {x - 1} \right| + 3\ln \left| {x - 2} \right| + C\)
\( \Rightarrow a = - 2,{\rm{ }}b = 3 \Rightarrow a + b = 1\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.