Có bao nhiêu số nguyên m thuộc \[\left[ { - 2020;2020} \right]\] sao cho phương trình \[{4^{{{\left( {x - 1} \right)}^2}}} - 4m{.2^{{x^2} - 2x}} + 3m - 2 = 0\] có bốn nghiệm phân biệt?
Quảng cáo
Trả lời:
Đáp án A
Ta có \[{4^{{{\left( {x - 1} \right)}^2}}} - 4m{.2^{{x^2} - 2x}} + 3m - 2 = 0 \Leftrightarrow {4^{{{\left( {x - 1} \right)}^2}}} - 2m{.2^{{{\left( {x - 1} \right)}^2}}} + 3m - 2 = 0{\rm{ }}\left( 1 \right)\]
Đặt \(t = {2^{{{\left( {x - 1} \right)}^2}}} \Rightarrow t' = {2^{{{\left( {x - 1} \right)}^2}}}.\ln 2.2\left( {x - 1} \right)\)
Khi đó \(\left( 1 \right) \Leftrightarrow {t^2} - 2mt + 3m - 2 = 0 = g\left( t \right)\)
Để phương trình đã cho có bốn nghiệm phân biệt thì phương trình \(g\left( t \right)\) phải có hai nghiệm phân biệt lớn hơn 1 \[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {m^2} - \left( {3m - 2} \right) > 0\\g\left( 1 \right) > 0\\ - \frac{b}{{2a}} = m > 1\end{array} \right. \Leftrightarrow m > 2\].
Kết hợp điều kiện \[m \in \left[ { - 2020;2010} \right] \Rightarrow m \in \left\{ {3;4;...;2020} \right\}\].
Vậy có 2018 giá trị của m thỏa mãnHot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Đặt \(2x = t \Rightarrow J = \int\limits_0^4 {f\left( t \right)d\left( {\frac{t}{2}} \right) = \frac{1}{2}\int\limits_0^4 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^4 {f\left( x \right)dx} = \frac{1}{2}.32 = 16} \).
Lời giải
Đáp án A
\(\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} = \int {\frac{{ - 2\left( {x - 2} \right) + 3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} \)
\( = \int {\left( {\frac{{ - 2}}{{x - 1}} + \frac{3}{{x - 2}}} \right)dx} \)
\( = - 2\ln \left| {x - 1} \right| + 3\ln \left| {x - 2} \right| + C\)
\( \Rightarrow a = - 2,{\rm{ }}b = 3 \Rightarrow a + b = 1\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.