Câu hỏi:

28/06/2022 432 Lưu

Với các số thực \[a,b > 0,a \ne 1\]  tùy ý, biểu thức \[{\log _{{a^2}}}\left( {a{b^2}} \right)\] bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Áp dụng công thức: \({\log _{{a^n}}}b = \frac{1}{n}{\log _a}b{\rm{ }}\left( {a,b > 0,{\rm{ }}a \ne 1,{\rm{ }}n \ne 0} \right)\)\({\log _a}{b^n} = n.{\log _a}b{\rm{ }}\left( {a,b > 0;{\rm{ }}a \ne 1} \right)\)

Lưu ý: \({\log _a}a = 1{\rm{ }}\left( {a > 0,{\rm{ }}a \ne 1} \right)\)

Cách giải:

\({\log _{{a^2}}}\left( {a{b^2}} \right) = {\log _{{a^2}}}a + {\log _{{a^2}}}{b^2} = \frac{1}{2}{\log _a}a + \frac{1}{2}.2.{\log _a}b = \frac{1}{2} + {\log _a}b\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Đặt \(2x = t \Rightarrow J = \int\limits_0^4 {f\left( t \right)d\left( {\frac{t}{2}} \right) = \frac{1}{2}\int\limits_0^4 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^4 {f\left( x \right)dx} = \frac{1}{2}.32 = 16} \).

Lời giải

Đáp án A

\(\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} = \int {\frac{{ - 2\left( {x - 2} \right) + 3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} \)

                        \( = \int {\left( {\frac{{ - 2}}{{x - 1}} + \frac{3}{{x - 2}}} \right)dx} \)

                        \( = - 2\ln \left| {x - 1} \right| + 3\ln \left| {x - 2} \right| + C\)

\( \Rightarrow a = - 2,{\rm{ }}b = 3 \Rightarrow a + b = 1\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP