Câu hỏi:

28/06/2022 223 Lưu

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

Cho hàm số y=f(x)có bảng biến thiên như sau:   (ảnh 1)

Hàm \[g\left( x \right) = 2{f^3}\left( x \right) - 6{f^2}\left( x \right) - 1\] có bao nhiêu điểm cực tiểu?

A. 3.                       
B. 4.                       
C. 5.                       
D. 6.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Để xử lý bài toán các bạn mạnh dạn đạo hàm hàm hợp và chú ý vấn đề nghiệm đơn, nghiệm kép.

\(g\left( x \right) = 2{f^3}\left( x \right) - 6{f^2}\left( x \right) - 1 \Rightarrow g\left( x \right) = 6f'\left( x \right).{f^2}\left( x \right) - 12f'\left( x \right).f\left( x \right) = 0\)

+ \(f'\left( x \right) = 0\) có 2 nghiệm \(x = 0;{\rm{ }}x = 3\).

+ \({f^2}\left( x \right) - 2f\left( x \right) = 0 \Rightarrow \left[ \begin{array}{l}f\left( x \right) = 0 \Rightarrow x = \alpha > 3\\f\left( x \right) = 2 \Rightarrow x = m < 0;{\rm{ }}x = n \in \left( {0;3} \right);{\rm{ }}x = \beta > 3,{\rm{ }}\beta < \alpha \end{array} \right.\)

Tất cả các nghiệm đều là nghiệm đơn.

Chú ý rằng nếu \(x > \alpha \Rightarrow f\left( x \right) < 0\) theo như bảng biến thiên. Do đó ta có bảng biến thiên hàm \(g\left( x \right)\)

Cho hàm số y=f(x)có bảng biến thiên như sau:   (ảnh 2)

Như vậy kết luận 3 điểm cực tiểu.

Trên đây là lập luận chặt chẽ, ngoài ra các em có thể tính nhanh dựa trên may mắn như sau: \(g'\left( x \right) = 0\) có 6 nghiệm phân biệt, thế thì có 3 cực tiểu, 3 cực đại. Sự may mắn này có lẻ chỉ đến khi có số chẵn nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[J = 32.\]              
B. \[J = 64.\]              
C. \[J = 8.\]               
D. \[J = 16.\]

Lời giải

Đáp án D

Đặt \(2x = t \Rightarrow J = \int\limits_0^4 {f\left( t \right)d\left( {\frac{t}{2}} \right) = \frac{1}{2}\int\limits_0^4 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^4 {f\left( x \right)dx} = \frac{1}{2}.32 = 16} \).

Lời giải

Đáp án A

\(\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} = \int {\frac{{ - 2\left( {x - 2} \right) + 3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx} \)

                        \( = \int {\left( {\frac{{ - 2}}{{x - 1}} + \frac{3}{{x - 2}}} \right)dx} \)

                        \( = - 2\ln \left| {x - 1} \right| + 3\ln \left| {x - 2} \right| + C\)

\( \Rightarrow a = - 2,{\rm{ }}b = 3 \Rightarrow a + b = 1\)

Câu 3

A. \[\frac{{3328\pi }}{{35}}.\]                  
B. \[\frac{{9216\pi }}{5}.\]    
C. \[\frac{{13312\pi }}{{35}}.\]                         
D. \[\frac{{1024\pi }}{5}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{{x^3}}}{3} - \frac{{{3^x}}}{{\ln 3}} - \ln \left| x \right| + C,C \in \mathbb{R}.\] 

B. \[\frac{{{x^3}}}{3} - \frac{{{3^x}}}{{\ln 3}} + \ln \left| x \right| + C,C \in \mathbb{R}.\]

C. \[\frac{{{x^3}}}{3} - {3^x} + \frac{1}{{{x^2}}} + C,C \in \mathbb{R}.\]     
D. \[\frac{{{x^3}}}{3} - \frac{{{3^x}}}{{\ln 3}} - \frac{1}{{{x^2}}} + C,C \in \mathbb{R}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP