Câu hỏi:

28/06/2022 209

Cho phương trình \[\left( {2{x^2} - 2x + 1} \right){.2^{2{x^3} + 2{x^2} - 4x + 4 - 2m}} = - {x^3} + {x^2} + m - 1{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 1 \right)\]. Có bao nhiêu giá trị nguyên của tham số m để phương trình (1) có nghiệm \[x \in \left[ {1;2} \right]\]

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

\[\left( {2{x^2} - 2x + 1} \right){.2^{2{x^3} + 2{x^2} - 4x + 4 - 2m}} = - {x^3} + {x^2} + m - 1\]

\[ \Leftrightarrow \left( {2{x^2} - 2x + 1} \right){.2^{4{x^2} - 4x + 2}} = \left( { - {x^3} + {x^2} + m - 1} \right){.2^{ - 2{x^3} + 2{x^2} + 2m - 2}}\]

\[ \Leftrightarrow f\left( {2{x^2} - 2x + 1} \right) = f\left( { - {x^3} + {x^2} + m - 1} \right)\] với \[f\left( t \right) = t{.2^{2t}}\].

Với \[x \in \left[ {1;2} \right] \Rightarrow 2{x^2} - 2x + 1 \in \left[ {1;5} \right]\]

Lại có: \[f'\left( t \right) = {2^{2t}} + 2t{.2^{2t}}.\ln 2 = {2^t}\left( {1 + 2t.\ln 2} \right) > 0,{\rm{ }}\forall t \in \left[ {1;5} \right]\] hay \[f\left( t \right)\] đồng biến trên đoạn \[\left[ {1;5} \right]\].

Khi đó: \[f\left( {2{x^2} - 2x + 1} \right) = f\left( { - {x^2} + {x^2} + m - 1} \right) \Leftrightarrow 2{x^2} - 2x + 1 = - {x^3} + {x^2} + m - 1\]

\[ \Leftrightarrow {x^2} + {x^2} - 2x + 2 = m{\rm{ }}\left( 2 \right)\].

Phương trình (1) có nghiệm \[x \in \left[ {1;2} \right]\] Û phương trình (2) có nghiệm \[x \in \left[ {1;2} \right]\]

\[ \Leftrightarrow \mathop {\min }\limits_{\left[ {1;2} \right]} g\left( x \right) \le m \le \mathop {\max }\limits_{\left[ {1;2} \right]} g\left( x \right)\] với \[g\left( x \right) = {x^3} + {x^2} - 2x + 2\]

\[ \Leftrightarrow 2 \le m \le 10\] hay \[m \in \left\{ {2;3;4;5;6;7;8;9;10} \right\}\].

Vậy có 9 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].

Xem đáp án » 28/06/2022 4,075

Câu 2:

Cho hàm số \[y = f\left( x \right)\] là hàm số bậc ba có bảng biến thiên như hình vẽ

Cho hàm số y=f(x) là hàm số bậc ba có bảng biến thiên như hình vẽ   (ảnh 1)

Số đường tiệm cận đứng và ngang của đồ thị hàm số \[y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\]

Xem đáp án » 28/06/2022 1,334

Câu 3:

Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]

Xem đáp án » 28/06/2022 1,092

Câu 4:

Biết \[\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx = a\ln \left| {x - 1} \right|} + b\ln \left| {x - 2} \right| + C,\left( {a,b \in \mathbb{R}} \right).\] Tính giá trị của biểu thức \[a + b\].

Xem đáp án » 28/06/2022 1,028

Câu 5:

Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng

Xem đáp án » 28/06/2022 704

Câu 6:

Biết giá trị lớn nhất của hàm số \[y = f\left( x \right) = \left| {2{x^3} - 15x + m - 5} \right| + 9x\] trên \[\left[ {0;3} \right]\] bằng 60. Tính tổng tất cả các giá trị của tham số thực m.

Xem đáp án » 28/06/2022 673

Câu 7:

Xét số phức R thỏa mãn \[\frac{{z + 2}}{{z - 2i}}\] là số thuần ảo. Biết rằng tập hợp các điểm biểu diễn các số phức R luôn thuộc một đường tròn cố định. Bán kính của đường tròn đó bằng

Xem đáp án » 28/06/2022 534

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn