Câu hỏi:

28/06/2022 239

Cho phương trình \[\left( {2{x^2} - 2x + 1} \right){.2^{2{x^3} + 2{x^2} - 4x + 4 - 2m}} = - {x^3} + {x^2} + m - 1{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 1 \right)\]. Có bao nhiêu giá trị nguyên của tham số m để phương trình (1) có nghiệm \[x \in \left[ {1;2} \right]\]

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

\[\left( {2{x^2} - 2x + 1} \right){.2^{2{x^3} + 2{x^2} - 4x + 4 - 2m}} = - {x^3} + {x^2} + m - 1\]

\[ \Leftrightarrow \left( {2{x^2} - 2x + 1} \right){.2^{4{x^2} - 4x + 2}} = \left( { - {x^3} + {x^2} + m - 1} \right){.2^{ - 2{x^3} + 2{x^2} + 2m - 2}}\]

\[ \Leftrightarrow f\left( {2{x^2} - 2x + 1} \right) = f\left( { - {x^3} + {x^2} + m - 1} \right)\] với \[f\left( t \right) = t{.2^{2t}}\].

Với \[x \in \left[ {1;2} \right] \Rightarrow 2{x^2} - 2x + 1 \in \left[ {1;5} \right]\]

Lại có: \[f'\left( t \right) = {2^{2t}} + 2t{.2^{2t}}.\ln 2 = {2^t}\left( {1 + 2t.\ln 2} \right) > 0,{\rm{ }}\forall t \in \left[ {1;5} \right]\] hay \[f\left( t \right)\] đồng biến trên đoạn \[\left[ {1;5} \right]\].

Khi đó: \[f\left( {2{x^2} - 2x + 1} \right) = f\left( { - {x^2} + {x^2} + m - 1} \right) \Leftrightarrow 2{x^2} - 2x + 1 = - {x^3} + {x^2} + m - 1\]

\[ \Leftrightarrow {x^2} + {x^2} - 2x + 2 = m{\rm{ }}\left( 2 \right)\].

Phương trình (1) có nghiệm \[x \in \left[ {1;2} \right]\] Û phương trình (2) có nghiệm \[x \in \left[ {1;2} \right]\]

\[ \Leftrightarrow \mathop {\min }\limits_{\left[ {1;2} \right]} g\left( x \right) \le m \le \mathop {\max }\limits_{\left[ {1;2} \right]} g\left( x \right)\] với \[g\left( x \right) = {x^3} + {x^2} - 2x + 2\]

\[ \Leftrightarrow 2 \le m \le 10\] hay \[m \in \left\{ {2;3;4;5;6;7;8;9;10} \right\}\].

Vậy có 9 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].

Xem đáp án » 28/06/2022 4,794

Câu 2:

Biết \[\int {\frac{{x + 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}dx = a\ln \left| {x - 1} \right|} + b\ln \left| {x - 2} \right| + C,\left( {a,b \in \mathbb{R}} \right).\] Tính giá trị của biểu thức \[a + b\].

Xem đáp án » 28/06/2022 2,823

Câu 3:

Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]

Xem đáp án » 28/06/2022 1,886

Câu 4:

Cho hàm số \[y = f\left( x \right)\] là hàm số bậc ba có bảng biến thiên như hình vẽ

Cho hàm số y=f(x) là hàm số bậc ba có bảng biến thiên như hình vẽ   (ảnh 1)

Số đường tiệm cận đứng và ngang của đồ thị hàm số \[y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\]

Xem đáp án » 28/06/2022 1,828

Câu 5:

Diện tích hình phẳng giới hạn bởi đồ thị hàm số bậc ba \[y = f\left( x \right)\] và các trục tọa độ là \[S = 32\] (hình vẽ bên). Tính thể tích vật thể tròn xoay được tạo thành khi quay hình phẳng trên quanh trục \[Ox.\]

Diện tích hình phẳng giới hạn bởi đồ thị hàm số bậc ba  y=f(x) (ảnh 1)

Xem đáp án » 28/06/2022 871

Câu 6:

Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng

Xem đáp án » 28/06/2022 751

Câu 7:

Biết giá trị lớn nhất của hàm số \[y = f\left( x \right) = \left| {2{x^3} - 15x + m - 5} \right| + 9x\] trên \[\left[ {0;3} \right]\] bằng 60. Tính tổng tất cả các giá trị của tham số thực m.

Xem đáp án » 28/06/2022 729

Bình luận


Bình luận