Câu hỏi:

27/06/2022 271

Cho hàm số \(f\left( x \right)\)\(f\left( 3 \right) = - \frac{{25}}{3}\)\(f'\left( x \right) = \frac{x}{{\sqrt {x + 1} - 1}}\). Khi đó \(\int\limits_3^8 {f\left( x \right)dx} \) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có: \(f'\left( x \right) = \frac{x}{{\sqrt {x + 1} - 1}} = \frac{{x\left( {\sqrt {x + 1} + 1} \right)}}{{\left( {\sqrt {x + 1} - 1} \right)\left( {\sqrt {x + 1} + 1} \right)}} = \sqrt {x + 1} + 1\)

\[ \Rightarrow f\left( x \right) = \int {\left( {\sqrt {x + 1} + 1} \right)dx} = \frac{2}{3}\sqrt {{{\left( {x + 1} \right)}^3}} + x + C\]

Do \[f\left( 3 \right) = - \frac{{25}}{3} \Rightarrow \frac{2}{3}\left( {\sqrt {{{\left( {3 + 1} \right)}^3}} } \right) + 3 + C = - \frac{{25}}{3} \Leftrightarrow C = - \frac{{50}}{3}\].

Từ đó: \[f\left( x \right) = \frac{2}{3}\sqrt {{{\left( {x + 1} \right)}^3}} + x - \frac{{50}}{3}\]

\[ \Rightarrow \int\limits_8^8 {f\left( x \right)dx} = \int\limits_3^8 {\left[ {\frac{2}{3}\sqrt {{{\left( {x + 1} \right)}^3}} + x - \frac{{50}}{3}} \right]dx} = \left. {\left( {\frac{4}{{15}}\sqrt[3]{{{{\left( {x + 1} \right)}^5}}} + \frac{{{x^2}}}{2} - \frac{{50}}{3}} \right)} \right|_3^8 = \frac{{13}}{{30}}\].

Vậy \[\int\limits_3^8 {f\left( x \right)dx} = \frac{{13}}{{30}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Côsin của góc giữa đường thẳng SC và mặt phẳng \(\left( {ABC} \right)\) bằng

Lời giải

Đáp án A

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S  (ảnh 1)

Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC} \right)\)

\( \Rightarrow \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \widehat {SCH} \Rightarrow \cos \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \cos \widehat {SCH} = \frac{{HC}}{{HS}}\)

Cạnh \(SH = \frac{{AB}}{2} = \frac{a}{2}\)\(HC = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow SC = \sqrt {S{H^2} + C{H^2}} = a \Rightarrow \frac{{HC}}{{SC}} = \frac{{\sqrt 3 }}{2}\).

Câu 2

Với a là số thực dương tùy ý, \(\ln \left( {8a} \right) - \ln \left( {3a} \right)\) bằng

Lời giải

Đáp án A

Ta có \(\ln \left( {8a} \right) - \ln \left( {3a} \right) = \ln \frac{{8a}}{{3a}} = \ln \frac{8}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_2} + {u_5} = 19\). Tổng 6 số hạng đầu tiên bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Với các số thực dương x, y tùy ý, đặt \({\log _2}x = a,{\rm{ }}{\log _2}y = b\). Mệnh đề nào dưới đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay