Câu hỏi:

27/06/2022 2,446 Lưu

Với a là số thực dương tùy ý, \(\ln \left( {8a} \right) - \ln \left( {3a} \right)\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có \(\ln \left( {8a} \right) - \ln \left( {3a} \right) = \ln \frac{{8a}}{{3a}} = \ln \frac{8}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S  (ảnh 1)

Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC} \right)\)

\( \Rightarrow \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \widehat {SCH} \Rightarrow \cos \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \cos \widehat {SCH} = \frac{{HC}}{{HS}}\)

Cạnh \(SH = \frac{{AB}}{2} = \frac{a}{2}\)\(HC = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow SC = \sqrt {S{H^2} + C{H^2}} = a \Rightarrow \frac{{HC}}{{SC}} = \frac{{\sqrt 3 }}{2}\).

Lời giải

Đáp án C

Giả sử \[z = a + bi{\rm{ }}\left( {a,b \in \mathbb{R}} \right) \Rightarrow \overline z = a - bi \Rightarrow z + \overline z = 2a\].

Từ \[\left| z \right| = \left| {z + \overline z } \right| = 1 \Rightarrow \left\{ \begin{array}{l}\sqrt {{a^2} + {b^2}} = 1\\\left| {2a} \right| = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} = 1\\a = \pm \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = \frac{1}{2};{\rm{ }}b = \pm \frac{{\sqrt 3 }}{2}\\a = - \frac{1}{2};{\rm{ }}b = \pm \frac{{\sqrt 3 }}{2}\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP