Câu hỏi:

27/06/2022 436 Lưu

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{x - \sqrt {4x - 3} }}{{{x^2} - 5x + 6}}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có \[y = \frac{{{x^2} - \left( {4x - 3} \right)}}{{\left( {{x^2} - 5x + 6} \right)\left( {x + \sqrt {4x - 3} } \right)}} = \frac{{x - 1}}{{\left( {x - 2} \right)\left( {x + \sqrt {4x - 3} } \right)}}\]

Đồ thị hàm số có đúng một tiệm cận đứng là \[x = 2\].

Từ \[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{\left( {x - 2} \right)\left( {x + \sqrt {4x - 3} } \right)}} = 0 \Rightarrow TCN:y = 0\\\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{\left( {x - 2} \right)\left( {x + \sqrt {4x - 3} } \right)}} = 0 \Rightarrow TCN:y = 0\end{array} \right.\] Þ Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S  (ảnh 1)

Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC} \right)\)

\( \Rightarrow \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \widehat {SCH} \Rightarrow \cos \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \cos \widehat {SCH} = \frac{{HC}}{{HS}}\)

Cạnh \(SH = \frac{{AB}}{2} = \frac{a}{2}\)\(HC = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow SC = \sqrt {S{H^2} + C{H^2}} = a \Rightarrow \frac{{HC}}{{SC}} = \frac{{\sqrt 3 }}{2}\).

Câu 2

Lời giải

Đáp án A

Ta có \(\ln \left( {8a} \right) - \ln \left( {3a} \right) = \ln \frac{{8a}}{{3a}} = \ln \frac{8}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP