Cho các hàm số \(y = f\left( x \right),{\rm{ }}y = f\left( {f\left( x \right)} \right),{\rm{ }}y = f\left( {4 - 2x} \right)\) có đồ thị lần lượt là \(\left( {{C_1}} \right),\left( {{C_2}} \right),\left( {{C_3}} \right)\). Đường thẳng \(x = 1\) cắt \(\left( {{C_1}} \right),\left( {{C_2}} \right),\left( {{C_3}} \right)\) lần lượt tại M, N, P. Biết tiếp tuyến của \(\left( {{C_1}} \right)\) tại M có phương trình là \(y = 3x - 1\), tiếp tuyến của \(\left( {{C_2}} \right)\) tại N có phương trình là \(y = x + 1\). Phương trình tiếp tuyến của \(\left( {{C_3}} \right)\) tại P là
Quảng cáo
Trả lời:
Đáp án C
Tiếp tuyến của \[\left( {{C_1}} \right)\] tại M có phương trình là \(d:y = f'\left( 1 \right).\left( {x - 1} \right) + f\left( 1 \right)\).
Bài ra ta có \(d:y = 3x - 1 \Rightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 3\\f\left( 1 \right) - f'\left( 1 \right) = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 3\\f\left( 1 \right) = 2\end{array} \right.\)
Từ \(y = f\left( {f\left( x \right)} \right) \Rightarrow y' = f'\left( x \right).f'\left( {f\left( x \right)} \right)\).
Tiếp tuyến của \(\left( {{C_2}} \right)\) tại N có phương trình là
\(d':y = f'\left( 1 \right).f'\left( {f\left( 1 \right)} \right).\left( {x - 1} \right) + f\left( {f\left( 1 \right)} \right) \Rightarrow y = 3'\left( 2 \right).\left( {x - 1} \right) + f\left( 2 \right)\).
Bài ra \(d:y = x + 1 \Rightarrow \left\{ \begin{array}{l}3f'\left( 2 \right) = 1\\f\left( 2 \right) - 3f'\left( 2 \right) = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}f'\left( 2 \right) = \frac{1}{3}\\f\left( 2 \right) = 2\end{array} \right.\)
Từ \(y = f\left( {4 - 2x} \right) \Rightarrow y' = - 2f'\left( {4 - 2x} \right)\).
Phương trình tiếp tuyến của \(\left( {{C_3}} \right)\) tại P là \[y = - 2f'\left( 2 \right).\left( {x - 1} \right) + f\left( 2 \right)\]
\[ \Rightarrow y = - 2.\frac{1}{3}\left( {x - 1} \right) + 2 \Rightarrow y = - \frac{2}{3}x + \frac{8}{3}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A

Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC} \right)\)
\( \Rightarrow \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \widehat {SCH} \Rightarrow \cos \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \cos \widehat {SCH} = \frac{{HC}}{{HS}}\)
Cạnh \(SH = \frac{{AB}}{2} = \frac{a}{2}\) và \(HC = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)
\( \Rightarrow SC = \sqrt {S{H^2} + C{H^2}} = a \Rightarrow \frac{{HC}}{{SC}} = \frac{{\sqrt 3 }}{2}\).
Lời giải
Đáp án A
Ta có \(\ln \left( {8a} \right) - \ln \left( {3a} \right) = \ln \frac{{8a}}{{3a}} = \ln \frac{8}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.