Câu hỏi:

27/06/2022 714

Cho hình nón \(\left( N \right)\) có đường cao bằng \(\frac{{3a}}{2}\), đáy của \(\left( N \right)\) có bán kính bằng a. Thiết diện qua đỉnh của \(\left( N \right)\) là một tam giác nằm trong mặt phẳng cách tâm đáy của \(\left( N \right)\) một khoảng bằng \(\frac{{3a}}{4}\). Tính theo a diện tích S của tam giác này.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Cho hình nón  (N) có đường cao bằng 3a/2 , đáy của (N) có bán kính bằng a (ảnh 1)

Thiết diện qua đỉnh \(\left( N \right)\)\(\Delta SCD\) như hình vẽ.

Kẻ \(OK \bot CD,{\rm{ }}OP \bot SK \Rightarrow d\left( {O;\left( {SCD} \right)} \right) = OP = \frac{{3a}}{4}\).

\(\frac{1}{{O{K^2}}} = \frac{1}{{O{P^2}}} - \frac{1}{{S{O^2}}} = \frac{{16}}{{9{a^2}}} - \frac{4}{{9{a^2}}} = \frac{{12}}{{9{a^2}}} \Rightarrow OK = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow C{K^2} = \sqrt {O{C^2} - O{K^2}} = \sqrt {{a^2} - \frac{{3{a^2}}}{4}} = \frac{a}{2} \Rightarrow CD = 2CK = a\).

Ta có \(SK = \frac{{SO.OK}}{{OP}} = \frac{{\frac{{3a}}{2}.\frac{{a\sqrt 3 }}{2}}}{{\frac{{3a}}{4}}} = a\sqrt 3 \).

Từ \(CD \bot \left( {SOK} \right) \Rightarrow CD \bot SK\)

\( \Rightarrow {S_{SCD}} = \frac{1}{2}CD.SK = \frac{1}{2}a.a\sqrt 3 = \frac{{{a^2}\sqrt 3 }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Côsin của góc giữa đường thẳng SC và mặt phẳng \(\left( {ABC} \right)\) bằng

Lời giải

Đáp án A

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S  (ảnh 1)

Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC} \right)\)

\( \Rightarrow \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \widehat {SCH} \Rightarrow \cos \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \cos \widehat {SCH} = \frac{{HC}}{{HS}}\)

Cạnh \(SH = \frac{{AB}}{2} = \frac{a}{2}\)\(HC = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)

\( \Rightarrow SC = \sqrt {S{H^2} + C{H^2}} = a \Rightarrow \frac{{HC}}{{SC}} = \frac{{\sqrt 3 }}{2}\).

Câu 2

Với a là số thực dương tùy ý, \(\ln \left( {8a} \right) - \ln \left( {3a} \right)\) bằng

Lời giải

Đáp án A

Ta có \(\ln \left( {8a} \right) - \ln \left( {3a} \right) = \ln \frac{{8a}}{{3a}} = \ln \frac{8}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_2} + {u_5} = 19\). Tổng 6 số hạng đầu tiên bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Với các số thực dương x, y tùy ý, đặt \({\log _2}x = a,{\rm{ }}{\log _2}y = b\). Mệnh đề nào dưới đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay