Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
\(x\) |
\( - \infty \) |
|
0 |
|
2 |
|
\( + \infty \) |
\(f'\left( x \right)\) |
|
- |
0 |
+ |
0 |
- |
|
\(f\left( x \right)\) |
\( + \infty \) |
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
-2 |
|
|
|
\( - \infty \) |
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Quảng cáo
Trả lời:
Đáp án C
Hàm số \(f\left( x \right)\) đồng biến trên \(\left( {0;2} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A

Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC} \right)\)
\( \Rightarrow \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \widehat {SCH} \Rightarrow \cos \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \cos \widehat {SCH} = \frac{{HC}}{{HS}}\)
Cạnh \(SH = \frac{{AB}}{2} = \frac{a}{2}\) và \(HC = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)
\( \Rightarrow SC = \sqrt {S{H^2} + C{H^2}} = a \Rightarrow \frac{{HC}}{{SC}} = \frac{{\sqrt 3 }}{2}\).
Lời giải
Đáp án A
Ta có \(\ln \left( {8a} \right) - \ln \left( {3a} \right) = \ln \frac{{8a}}{{3a}} = \ln \frac{8}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.