Trong không gian Oxyz, cho hai đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{{z - 1}}{1}\) và \(d':\frac{{x - 1}}{1} = \frac{{y + 2}}{1} = \frac{{z + 1}}{1}\). Mặt phẳng \(\left( P \right):ax + by + cz + 2 = 0\) chứa d và tạo với \(d'\) một góc lớn nhất. Tính a + b + c.
Quảng cáo
Trả lời:
Đáp án B
Lấy \(A\left( {1; - 2;1} \right) \in d\), qua A kẻ \(d''//d' \Rightarrow d'':\frac{{x - 1}}{1} = \frac{{y + 2}}{1} = \frac{{z - 1}}{1}\).
Lấy \(I\left( {0; - 3;0} \right) \in d''\), kẻ \(IH \bot \left( P \right),{\rm{ }}IK \bot d\) (K cố định và H thay đổi).

Ta có \(\left( {\widehat {d';\left( P \right)}} \right) = \left( {\widehat {d'';\left( P \right)}} \right) = \widehat {IAH}\) mà \(\sin \widehat {IAH} = \frac{{IH}}{{IA}} \le \frac{{IK}}{{IA}}\left( {const} \right)\).
Dấu “=” xảy ra \(H \equiv K{\rm{ hay }}IK \bot \left( P \right)\).
Điểm \(K \in \left( d \right) \Rightarrow K\left( {t + 1; - t - 2;t + 1} \right) \Rightarrow \overrightarrow {IK} = \left( {t + 1;1 - t;t + 1} \right)\).
Khi đó
\(IK \bot d \Rightarrow \overrightarrow {IK} .\overrightarrow {{u_d}} = 0 \Leftrightarrow \left( {t + 1} \right) - \left( {1 - t} \right) + \left( {t + 1} \right) = 0 \Leftrightarrow t = - \frac{1}{3} \Rightarrow \overrightarrow {IK} = \left( {\frac{2}{3};\frac{4}{3};\frac{2}{3}} \right)\).
Mặt phẳng \(\left( P \right)\) nhận \(\overrightarrow {IK} = \left( {\frac{2}{3};\frac{4}{3};\frac{2}{3}} \right)\) là một VTPT nên nhận \(\overrightarrow n \left( {1;2;1} \right)\) là một VTPT.
Kết hợp \(\left( P \right)\) qua \(A\left( {1; - 2;1} \right) \Rightarrow \left( P \right):\left( {x - 1} \right) + 2\left( {y + 2} \right) + \left( {z - 1} \right) = 0 \Leftrightarrow x + 2y + z + 2 = 0\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A

Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC} \right)\)
\( \Rightarrow \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \widehat {SCH} \Rightarrow \cos \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \cos \widehat {SCH} = \frac{{HC}}{{HS}}\)
Cạnh \(SH = \frac{{AB}}{2} = \frac{a}{2}\) và \(HC = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)
\( \Rightarrow SC = \sqrt {S{H^2} + C{H^2}} = a \Rightarrow \frac{{HC}}{{SC}} = \frac{{\sqrt 3 }}{2}\).
Lời giải
Đáp án A
Ta có \(\ln \left( {8a} \right) - \ln \left( {3a} \right) = \ln \frac{{8a}}{{3a}} = \ln \frac{8}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.