Câu hỏi:
14/04/2022 226Trong không gian, cho hình thang vuông tại \(A\) và \(D\) biết \(AB = 2a;\,AD = CD = a\). Khi quay hình thang \(ABCD\) xung quanh cạnh \(AD\) thì đường gấp khúc \(ABCD\) tạo thành một khối tròn xoay. Thể tích của khối tròn xoay đó là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi \(E = AD \cap BC\), dễ thấy \(D\) là trung điểm của \(AE\). Ta có \(AD = DE = CD = a\).
Khi đó thể tích của khối tròn xoay cần tính bằng \({V_1} - {V_2}\). Trong đó:
+) \({V_1}\) là thể tích của khối tròn xoay khi quay đường gấp khúc \(ABE\) quanh trục \(AE\), và \({V_1} = \frac{1}{3}.\pi .{\left( {2a} \right)^2}.2a = \frac{{8\pi {a^3}}}{3}\).
+) \({V_2}\) là thể tích của khối tròn xoay khi quay đường gấp khúc \(DCE\) quanh trục \(DE\) và
\({V_2} = \frac{1}{3}\pi .{a^2}.a = \frac{{\pi {a^3}}}{3}\).
Vậy thể tích của khối tròn xoay cần tính bằng \(\frac{{8\pi {a^3}}}{3} - \frac{{\pi {a^3}}}{3} = \frac{{7\pi {a^3}}}{3}\).
Chọn đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong không gian \[Oxyz\] cho tam giác \[ABC\] có \[A(2;\,2;\,0)\], \[B(1;\,0;\,2)\], \[C(0;\,4;\,4)\]. Viết phương trình mặt cầu có tâm là \(A\) và đi qua trọng tâm \[G\] của tam giác \(ABC\).
Câu 4:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Gọi \(M\), \(N\) là các điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Tính độ dài đoạn \(MN\).
Câu 5:
Tập xác định của hàm số \(y = {\log _5}\left( {2x + 1} \right)\) là
Câu 6:
Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 2} \right){x^2} + \left( {8m + 1} \right)x\] đồng biến trên \(\mathbb{R}\).
Câu 7:
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và \({u_5} = 10\). Tính tổng \(5\) số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\).
về câu hỏi!