Câu hỏi:
14/04/2022 711Trong không gian \[Oxyz\], cho mặt phẳng\((\alpha ):2x + y - z + 1 = 0\). Vectơ nào sau đây không là vectơ pháp tuyến của mặt phẳng \[(\alpha )\]?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Mặt phẳng\((\alpha ):2x + y - z + 1 = 0\) có vectơ pháp tuyến là \[\overrightarrow {{n_1}} \left( {2;1; - 1} \right)\] nên các vectơ \[\overrightarrow {{n_2}} \left( { - 2; - 1;1} \right) = - \overrightarrow {{n_1}} \], \[\overrightarrow {{n_4}} \left( {4;2; - 2} \right) = 2\overrightarrow {{n_1}} \] cũng là các vectơ pháp tuyến của mặt phẳng\[(\alpha )\].
Vectơ \[\overrightarrow {{n_3}} \left( {2;1;1} \right)\] không cùng phương với \[\overrightarrow {{n_1}} \left( {2;1; - 1} \right)\] nên không phải là VTPT của mặt phẳng \[(\alpha )\].
Chọn đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong không gian \[Oxyz\] cho tam giác \[ABC\] có \[A(2;\,2;\,0)\], \[B(1;\,0;\,2)\], \[C(0;\,4;\,4)\]. Viết phương trình mặt cầu có tâm là \(A\) và đi qua trọng tâm \[G\] của tam giác \(ABC\).
Câu 4:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Gọi \(M\), \(N\) là các điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Tính độ dài đoạn \(MN\).
Câu 5:
Tập xác định của hàm số \(y = {\log _5}\left( {2x + 1} \right)\) là
Câu 6:
Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 2} \right){x^2} + \left( {8m + 1} \right)x\] đồng biến trên \(\mathbb{R}\).
Câu 7:
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và \({u_5} = 10\). Tính tổng \(5\) số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\).
về câu hỏi!