Câu hỏi:
14/04/2022 829Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y - z = 0\) và mặt phẳng \(\left( Q \right):2x - y + z = 0\). Giao tuyến của mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) có phương trình là
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Mặt phẳng \(\left( P \right):x + 2y - z = 0\) có vectơ pháp tuyến là \({\vec n_{\left( P \right)}} = \left( {1;2; - 1} \right)\), đi qua gốc tọa độ \(O\left( {0;0;0} \right)\); mặt phẳng \(\left( Q \right)\)có vectơ pháp tuyến là \({\vec n_{\left( Q \right)}} = \left( {2; - 1;1} \right)\); đi qua gốc tọa độ \(O\).
Gọi giao tuyến của \(\left( P \right);\left( Q \right)\) là đường thẳng \(\Delta \), có vectơ chỉ phương \(\vec u\).
Vì \(\Delta \subset \left( P \right) \Rightarrow \vec u \bot {\vec n_{\left( P \right)}};\Delta \subset \left( P \right) \Rightarrow \vec u \bot {\vec n_{\left( Q \right)}}\)
Mà \({\vec n_{\left( P \right)}}\) không cùng phương với \({\vec n_{\left( Q \right)}}\) nên \(\vec u = \left[ {{{\vec n}_{\left( P \right)}};{{\vec n}_{\left( Q \right)}}} \right] = \left( {1; - 3; - 5} \right)\).
\(O\) là điểm chung của 2 mặt phẳng nên \(O \in \Delta \).
Vậy phương trình chính tắc của \(\Delta \) là: \(\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{{ - 5}}\).
Chọn đáp án D
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[{\log _3}(3x - 2) \ge 2 \Leftrightarrow 3x - 2 \ge 9 \Leftrightarrow x \ge \frac{{11}}{3}.\]
Chọn đáp án B
Lời giải
Ta có \({3^{2x - 3}} >27 \Leftrightarrow 2x - 3 >3 \Leftrightarrow 2x >6 \Leftrightarrow x >3\).
Vậy tập nghiệm của bất phương trình đã cho là \(\left( {3\,;\, + \infty } \right)\).
Chọn đáp án D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.