Cho\[x\], \[y\], \[z\] là các số thực khác \[0\]thỏa mãn\[{2^x} = {3^y} = {6^{ - z}}\]. Tính giá trị biểu thức \[M = xy + yz + zx\].
A. \(M = 3\).
B. \[M = 6\].
C. \[M = 0\].
D. \(M = 1\).
Quảng cáo
Trả lời:

Ta có \({2^x} = {3^y} \Rightarrow y = \frac{{x\ln 2}}{{\ln 3}};{2^x} = {6^{ - z}} \Rightarrow z = - \frac{{x\ln 2}}{{\ln 6}}\).
Xét \(M = xy + yz + zx = {x^2}\left( {\frac{{\ln 2}}{{\ln 3}} - \frac{{{{\ln }^2}2}}{{\ln 3.\ln 6}} - \frac{{\ln 2}}{{\ln 6}}} \right)\)
\( = {x^2}\left( {\frac{{\ln 2.\ln 6 - {{\ln }^2}2 - \ln 2.\ln 3}}{{\ln 3.\ln 6}}} \right)\) \[ = {x^2} \cdot \frac{{\ln 2\left( {\ln 6 - \ln 2 - \ln 3} \right)}}{{\ln 3.\ln 6}} = 0\]
Chọn đáp án C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\(x \le \frac{4}{3}\).
B. \(x \ge \frac{{11}}{3}\).
C.\(x \le \frac{{11}}{3}\).
D.\(x \ge \frac{4}{3}\).
Lời giải
Ta có \[{\log _3}(3x - 2) \ge 2 \Leftrightarrow 3x - 2 \ge 9 \Leftrightarrow x \ge \frac{{11}}{3}.\]
Chọn đáp án B
Câu 2
A. \(\left( { - \infty \,;\,15} \right)\).
B. \(\left( {15\,;\, + \infty } \right)\).
C. \(\left( { - \infty \,;\,3} \right)\).
D. \(\left( {3\,;\, + \infty } \right)\).
Lời giải
Ta có \({3^{2x - 3}} >27 \Leftrightarrow 2x - 3 >3 \Leftrightarrow 2x >6 \Leftrightarrow x >3\).
Vậy tập nghiệm của bất phương trình đã cho là \(\left( {3\,;\, + \infty } \right)\).
Chọn đáp án D
Câu 3
A. \(S = \int\limits_{ - 1}^1 {\left( {{x^2} + x} \right)} {\rm{d}}x\).
B. \(S = \int\limits_1^{ - 1} {\left( {{x^2} + x} \right)} {\rm{d}}x\).
C. \(S = \int\limits_0^3 {\left( {{x^2} - 3x} \right)} {\rm{d}}x\).
D. \(S = \int\limits_0^3 {\left( {3x - {x^2}} \right)} {\rm{d}}x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = 4\].
B. \[{(x + 2)^2} + {(y + 2)^2} + {z^2} = 5\].
C. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = \sqrt 5 \].
D. \({(x - 2)^2} + {(y - 2)^2} + {z^2} = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left[ { - \frac{1}{2}; + \infty } \right)\).
B. \(\left( { - \frac{1}{2}; + \infty } \right)\).
C. \(\left( { - \infty ; - \frac{1}{2}} \right)\).
D. \(\left( { - \infty ; - \frac{1}{2}} \right]\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[y\, = \, - \,{x^3}\, + \,3x\, + \,2\].
B. \[y\, = \, - \,{x^3}\, + \,3{x^2}\, - \,2\].
C. \[y\, = {x^3}\, - \,3x\, + \,2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(2\sqrt 3 \).
B. \(5\sqrt 2 \).
C. \(20\).
D. \(2\sqrt 5 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.