Câu hỏi:

14/04/2022 168

Gọi \[S\] là tập hợp tất cả các giá trị của tham số thực \[m\] sao cho giá trị lớn nhất của hàm số \[y = \left| {{x^2} - 2x + 1 + m} \right|\] trên đoạn \[\left[ { - 1;2} \right]\] bằng \[5\]. Tính tổng các phần tử của \(S\) bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số \[f\left( x \right) = {x^2} - 2x + 1 + m\] có \[f'\left( x \right) = 2x - 2\].

Cho \[f'\left( x \right) = 0 \Rightarrow 2x - 2 = 0 \Leftrightarrow x = 1 \in \left[ { - 1;2} \right]\].

Ta có \[f\left( { - 1} \right) = m + 4\], \[f\left( 1 \right) = m\] và \[f\left( 2 \right) = m + 1\] \[ \Rightarrow \left\{ \begin{array}{l}\mathop {{\rm{max}}}\limits_{\left[ { - 1;2} \right]} f\left( x \right) = m + 4\\\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = m\end{array} \right.\].

Suy ra \[\mathop {{\rm{max}}}\limits_{\left[ { - 1;2} \right]} y = \mathop {{\rm{max}}}\limits_{\left[ { - 1;2} \right]} \left| {f\left( x \right)} \right| = {\rm{max}}\left\{ {\left| {m + 4} \right|;\left| m \right|} \right\} = 5\].

TH1: \[\left\{ \begin{array}{l}\left| {m + 4} \right| = 5\\\left| {m + 4} \right| >\left| m \right|\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1 & & \left( n \right)\\m = - 9 & & \left( l \right)\end{array} \right.\].

TH2: \[\left\{ \begin{array}{l}\left| m \right| = 5\\\left| m \right| >\left| {m + 4} \right|\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 5 & & (l)\\m = - 5 & & \left( n \right)\end{array} \right.\].

Do đó tổng các phần tử của \[S\] bằng \[1 + \left( { - 5} \right) = - 4\].

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Bất phương trình \({\log _3}(3x - 2) \ge 2\)có tập nghiệm là:

Xem đáp án » 14/04/2022 7,798

Câu 2:

 Trong không gian \[Oxyz\] cho tam giác \[ABC\] có \[A(2;\,2;\,0)\], \[B(1;\,0;\,2)\], \[C(0;\,4;\,4)\]. Viết phương trình mặt cầu có tâm là \(A\) và đi qua trọng tâm \[G\] của tam giác \(ABC\).

Xem đáp án » 14/04/2022 4,136

Câu 3:

Tập nghiệm của bát phương trình \({3^{2x - 3}} >27\) là

Xem đáp án » 14/04/2022 3,981

Câu 4:

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Cho hàm số y=f(x) xác định trên R và có bảng biến thiên như sau: Gọi M,N là các điểm cực trị (ảnh 1)

Gọi \(M\), \(N\) là các điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Tính độ dài đoạn \(MN\).

Xem đáp án » 14/04/2022 3,777

Câu 5:

Tập xác định của hàm số \(y = {\log _5}\left( {2x + 1} \right)\) là

Xem đáp án » 14/04/2022 3,598

Câu 6:

Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 2} \right){x^2} + \left( {8m + 1} \right)x\] đồng biến trên \(\mathbb{R}\).

Xem đáp án » 14/04/2022 2,639

Câu 7:

Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và \({u_5} = 10\). Tính tổng \(5\) số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\).

Xem đáp án » 14/04/2022 2,562

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store