Câu hỏi:

14/04/2022 218

Cho tứ diện đều \[ABCD\] có cạnh bằng \[a\]. Gọi \[M,\,\,N\] lần lượt là trung điểm của các cạnh \[AB,\,\,BC\] và \[E\] là điểm đối xứng với \[B\]qua \[D\]. Mặt phẳng \[\left( {MNE} \right)\] chia khối tứ diện \[ABCD\] thành hai khối đa diện. Trong đó, khối tứ diện \[ABCD\]có thể tích là \[V\], khối đa diện chứa đỉnh \[A\] có thể tích \[V'.\] Tính tỉ số \(\frac{{V'}}{V}\).

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(P = EN \cap CD\)và \(Q = EM \cap AD\).

Suy ra \[P,{\rm{ }}Q\] lần lượt là trọng tâm của \[\Delta BCE\]và \[\Delta ABE\].

Gọi \[S\] là diện tích tam giác \[BCD\], suy ra \({S_{\Delta CDE}} = {S_{\Delta BNE}} = S.\)

Ta có \[{S_{\Delta PDE}} = \frac{1}{3}.{S_{\Delta CDE}} = \frac{S}{3}.\]

Cho tứ diện đều ABCDcó cạnh bằng a. Gọi M,N lần lượt là trung điểm của các cạnh  (ảnh 1)

Gọi \[h\] là chiều cao của tứ diện \[ABCD\], suy ra

\[d\left[ {M,\left( {BCD} \right)} \right] = \frac{h}{2};{\rm{ }}\,d\left[ {Q,\left( {BCD} \right)} \right] = \frac{h}{3}.\]

Khi đó \[{V_{M.BNE}} = \frac{1}{3}{S_{\Delta BNE}}.d\left[ {M,\left( {BCD} \right)} \right] = \frac{{S.h}}{6};\]\[{V_{Q.PDE}} = \frac{1}{3}{S_{\Delta PDE}}.d\left[ {Q,\left( {BCD} \right)} \right] = \frac{{S.h}}{{27}}.\]

Suy ra \[{V_{PQD.NMB}} = {V_{M.BNE}} - {V_{Q.PDE}} = \frac{{S.h}}{6} - \frac{{S.h}}{{27}} = \frac{{7S.h}}{{54}} = \frac{7}{{18}}.\frac{{S.h}}{3} = \frac{7}{{18}}.{V_{ABCD}}\]

\[ \Rightarrow V' = V - \frac{7}{{18}}.{V_{}} = \frac{{11}}{{18}}V \Rightarrow \frac{{V'}}{V} = \frac{{11}}{{18}}\].

Vậy \(\frac{{V'}}{V} = \frac{{11}}{{18}}\).

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Bất phương trình \({\log _3}(3x - 2) \ge 2\)có tập nghiệm là:

Xem đáp án » 14/04/2022 8,072

Câu 2:

 Trong không gian \[Oxyz\] cho tam giác \[ABC\] có \[A(2;\,2;\,0)\], \[B(1;\,0;\,2)\], \[C(0;\,4;\,4)\]. Viết phương trình mặt cầu có tâm là \(A\) và đi qua trọng tâm \[G\] của tam giác \(ABC\).

Xem đáp án » 14/04/2022 4,516

Câu 3:

Tập nghiệm của bát phương trình \({3^{2x - 3}} >27\) là

Xem đáp án » 14/04/2022 4,128

Câu 4:

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Cho hàm số y=f(x) xác định trên R và có bảng biến thiên như sau: Gọi M,N là các điểm cực trị (ảnh 1)

Gọi \(M\), \(N\) là các điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Tính độ dài đoạn \(MN\).

Xem đáp án » 14/04/2022 3,993

Câu 5:

Tập xác định của hàm số \(y = {\log _5}\left( {2x + 1} \right)\) là

Xem đáp án » 14/04/2022 3,659

Câu 6:

Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và \({u_5} = 10\). Tính tổng \(5\) số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\).

Xem đáp án » 14/04/2022 2,776

Câu 7:

Đường cong trong hình bên dưới là đồ thị của hàm số nào trong bốn hàm số dưới đây ?

Đường cong trong hình bên dưới là đồ thị của hàm số nào trong bốn hàm số dưới đây  (ảnh 1)

Xem đáp án » 14/04/2022 2,743

Bình luận


Bình luận