Câu hỏi:

14/04/2022 300 Lưu

Cho tứ diện đều \[ABCD\] có cạnh bằng \[a\]. Gọi \[M,\,\,N\] lần lượt là trung điểm của các cạnh \[AB,\,\,BC\] và \[E\] là điểm đối xứng với \[B\]qua \[D\]. Mặt phẳng \[\left( {MNE} \right)\] chia khối tứ diện \[ABCD\] thành hai khối đa diện. Trong đó, khối tứ diện \[ABCD\]có thể tích là \[V\], khối đa diện chứa đỉnh \[A\] có thể tích \[V'.\] Tính tỉ số \(\frac{{V'}}{V}\).

A. \(\frac{7}{{18}}\).

B. \(\frac{{11}}{{18}}\).

C. \(\frac{{13}}{{18}}\).

D. \(\frac{1}{{18}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(P = EN \cap CD\)và \(Q = EM \cap AD\).

Suy ra \[P,{\rm{ }}Q\] lần lượt là trọng tâm của \[\Delta BCE\]và \[\Delta ABE\].

Gọi \[S\] là diện tích tam giác \[BCD\], suy ra \({S_{\Delta CDE}} = {S_{\Delta BNE}} = S.\)

Ta có \[{S_{\Delta PDE}} = \frac{1}{3}.{S_{\Delta CDE}} = \frac{S}{3}.\]

Cho tứ diện đều ABCDcó cạnh bằng a. Gọi M,N lần lượt là trung điểm của các cạnh  (ảnh 1)

Gọi \[h\] là chiều cao của tứ diện \[ABCD\], suy ra

\[d\left[ {M,\left( {BCD} \right)} \right] = \frac{h}{2};{\rm{ }}\,d\left[ {Q,\left( {BCD} \right)} \right] = \frac{h}{3}.\]

Khi đó \[{V_{M.BNE}} = \frac{1}{3}{S_{\Delta BNE}}.d\left[ {M,\left( {BCD} \right)} \right] = \frac{{S.h}}{6};\]\[{V_{Q.PDE}} = \frac{1}{3}{S_{\Delta PDE}}.d\left[ {Q,\left( {BCD} \right)} \right] = \frac{{S.h}}{{27}}.\]

Suy ra \[{V_{PQD.NMB}} = {V_{M.BNE}} - {V_{Q.PDE}} = \frac{{S.h}}{6} - \frac{{S.h}}{{27}} = \frac{{7S.h}}{{54}} = \frac{7}{{18}}.\frac{{S.h}}{3} = \frac{7}{{18}}.{V_{ABCD}}\]

\[ \Rightarrow V' = V - \frac{7}{{18}}.{V_{}} = \frac{{11}}{{18}}V \Rightarrow \frac{{V'}}{V} = \frac{{11}}{{18}}\].

Vậy \(\frac{{V'}}{V} = \frac{{11}}{{18}}\).

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(x \le \frac{4}{3}\).

B. \(x \ge \frac{{11}}{3}\).

C.\(x \le \frac{{11}}{3}\).

D.\(x \ge \frac{4}{3}\).

Lời giải

Ta có \[{\log _3}(3x - 2) \ge 2 \Leftrightarrow 3x - 2 \ge 9 \Leftrightarrow x \ge \frac{{11}}{3}.\]

Chọn đáp án B

Câu 2

A. \(\left( { - \infty \,;\,15} \right)\).

B. \(\left( {15\,;\, + \infty } \right)\).

C. \(\left( { - \infty \,;\,3} \right)\).

D. \(\left( {3\,;\, + \infty } \right)\).

Lời giải

Ta có \({3^{2x - 3}} >27 \Leftrightarrow 2x - 3 >3 \Leftrightarrow 2x >6 \Leftrightarrow x >3\).

Vậy tập nghiệm của bất phương trình đã cho là \(\left( {3\,;\, + \infty } \right)\).

Chọn đáp án D

Câu 3

A. \(S = \int\limits_{ - 1}^1 {\left( {{x^2} + x} \right)} {\rm{d}}x\).

B. \(S = \int\limits_1^{ - 1} {\left( {{x^2} + x} \right)} {\rm{d}}x\).

C. \(S = \int\limits_0^3 {\left( {{x^2} - 3x} \right)} {\rm{d}}x\).

D. \(S = \int\limits_0^3 {\left( {3x - {x^2}} \right)} {\rm{d}}x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = 4\].

B. \[{(x + 2)^2} + {(y + 2)^2} + {z^2} = 5\].

C. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = \sqrt 5 \].

D. \({(x - 2)^2} + {(y - 2)^2} + {z^2} = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ { - \frac{1}{2}; + \infty } \right)\).

B. \(\left( { - \frac{1}{2}; + \infty } \right)\).

C. \(\left( { - \infty ; - \frac{1}{2}} \right)\).

D. \(\left( { - \infty ; - \frac{1}{2}} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y\, = \, - \,{x^3}\, + \,3x\, + \,2\].

B. \[y\, = \, - \,{x^3}\, + \,3{x^2}\, - \,2\].

C. \[y\, = {x^3}\, - \,3x\, + \,2\].

D . \[y\, = \,{x^3}\, - \,3{x^2}\, + \,2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP