Trong mặt phẳng với hệ tọa độ \(Oxy\), hai số phức \[z\] và \(z'\) lần lượt được biểu diễn bởi hai điểm \(M\)và \(M'\). Hãy chọn khẳng định sai trong các khẳng định dưới đây.
A. Độ dài của véc tơ \(\overrightarrow {OM} \) được gọi là mô đun của số phức \[z\].
B. Độ dài của đoạn thẳng \(MM'\) bằng mô đun của số phức \(z - z'\).
C. Số phức \(z\) được gọi là số phức liên hợp của số phức \(z'\) khi và chỉ khi điểm \(M\) đối xứng với điểm \(M'\) qua trục \(Oy\).
D. Số phức \(z\) được gọi là số phức đối của số phức \(z'\) khi và chỉ khi điểm \(M\) đối xứng với điểm \(M'\) qua gốc tạo độ \(O\).
Quảng cáo
Trả lời:

Chọn đáp án C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\(x \le \frac{4}{3}\).
B. \(x \ge \frac{{11}}{3}\).
C.\(x \le \frac{{11}}{3}\).
D.\(x \ge \frac{4}{3}\).
Lời giải
Ta có \[{\log _3}(3x - 2) \ge 2 \Leftrightarrow 3x - 2 \ge 9 \Leftrightarrow x \ge \frac{{11}}{3}.\]
Chọn đáp án B
Câu 2
A. \(\left( { - \infty \,;\,15} \right)\).
B. \(\left( {15\,;\, + \infty } \right)\).
C. \(\left( { - \infty \,;\,3} \right)\).
D. \(\left( {3\,;\, + \infty } \right)\).
Lời giải
Ta có \({3^{2x - 3}} >27 \Leftrightarrow 2x - 3 >3 \Leftrightarrow 2x >6 \Leftrightarrow x >3\).
Vậy tập nghiệm của bất phương trình đã cho là \(\left( {3\,;\, + \infty } \right)\).
Chọn đáp án D
Câu 3
A. \(S = \int\limits_{ - 1}^1 {\left( {{x^2} + x} \right)} {\rm{d}}x\).
B. \(S = \int\limits_1^{ - 1} {\left( {{x^2} + x} \right)} {\rm{d}}x\).
C. \(S = \int\limits_0^3 {\left( {{x^2} - 3x} \right)} {\rm{d}}x\).
D. \(S = \int\limits_0^3 {\left( {3x - {x^2}} \right)} {\rm{d}}x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = 4\].
B. \[{(x + 2)^2} + {(y + 2)^2} + {z^2} = 5\].
C. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = \sqrt 5 \].
D. \({(x - 2)^2} + {(y - 2)^2} + {z^2} = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left[ { - \frac{1}{2}; + \infty } \right)\).
B. \(\left( { - \frac{1}{2}; + \infty } \right)\).
C. \(\left( { - \infty ; - \frac{1}{2}} \right)\).
D. \(\left( { - \infty ; - \frac{1}{2}} \right]\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[y\, = \, - \,{x^3}\, + \,3x\, + \,2\].
B. \[y\, = \, - \,{x^3}\, + \,3{x^2}\, - \,2\].
C. \[y\, = {x^3}\, - \,3x\, + \,2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(2\sqrt 3 \).
B. \(5\sqrt 2 \).
C. \(20\).
D. \(2\sqrt 5 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.