Câu hỏi:
14/04/2022 296Cho hàm số \[f(x)\]có \[f'(x) = \sin (2x).co{s^2}(4x)\]và \[f(0) = 0\]. Tính \[\int\limits_0^{\frac{\pi }{2}} {f(x)dx} \] bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có
\[\begin{array}{l}f'\left( x \right) = \sin \left( {2x} \right).co{s^2}\left( {4x} \right) \Rightarrow \int {f'\left( x \right)dx = \int {\sin \left( {2x} \right).co{s^2}\left( {4x} \right)dx} } \\ \Leftrightarrow f\left( x \right) = \int {\sin \left( {2x} \right).\frac{{1 + \cos \left( {8x} \right)}}{2}} dx\\ \Leftrightarrow f\left( x \right) = \frac{{ - 1}}{4}\cos \left( {2x} \right) + \frac{1}{4}\int {\left( {\sin 10x - \sin 6x} \right)} dx\\ \Leftrightarrow f(x) = \frac{{ - 1}}{4}\cos 2x - \frac{1}{{40}}\cos 10x + \frac{1}{{24}}\cos 6x + C\end{array}\]
\[f(0) = 0 \Leftrightarrow c = \frac{7}{{30}}\]
Vậy \[f(x) = \frac{{ - 1}}{4}\cos \left( {2x} \right) - \frac{1}{{40}}\cos \left( {10x} \right) + \frac{1}{{24}}\cos \left( {6x} \right) + \frac{7}{{30}}\]
Do đó:
\[\int\limits_0^{\frac{\pi }{2}} {f(x)dx} = \left. {\left( { - \frac{1}{8}\sin 2x - \frac{1}{{400}}\sin 10x + \frac{1}{{144}}\sin 6x + \frac{7}{{30}}x} \right)} \right|_0^{\frac{\pi }{2}} = \frac{{7\pi }}{{60}}\]
Chọn đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong không gian \[Oxyz\] cho tam giác \[ABC\] có \[A(2;\,2;\,0)\], \[B(1;\,0;\,2)\], \[C(0;\,4;\,4)\]. Viết phương trình mặt cầu có tâm là \(A\) và đi qua trọng tâm \[G\] của tam giác \(ABC\).
Câu 4:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Gọi \(M\), \(N\) là các điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Tính độ dài đoạn \(MN\).
Câu 5:
Tập xác định của hàm số \(y = {\log _5}\left( {2x + 1} \right)\) là
Câu 6:
Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 2} \right){x^2} + \left( {8m + 1} \right)x\] đồng biến trên \(\mathbb{R}\).
Câu 7:
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và \({u_5} = 10\). Tính tổng \(5\) số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\).
về câu hỏi!