Câu hỏi:

14/04/2022 1,110 Lưu

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình thang vuông tại \[A;\;B\]. Gọi \[G\] là trọng tâm tam giác \[SAB\]. Biết \[SA = a\sqrt 6 \] và vuông góc với mặt đáy \[(ABCD)\],\[AB = BC = \frac{1}{2}AD = a\]. Tính theo \[a\] khoảng cách từ \[G\] đến mặt phẳng \[\left( {SCD} \right)\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[AC = a\sqrt 2 \]. Gọi \[I\] là trung điểm của \[AD\]\[ \Rightarrow CD = \sqrt {C{I^2} + I{D^2}} = a\sqrt 2 \Rightarrow A{D^2} = C{D^2} + A{C^2} \Rightarrow CD \bot AC\]

Mà \[CD \bot SA \Rightarrow CD \bot \left( {SAC} \right)\]

Kẻ \[AH \bot SC \Rightarrow AH \bot \left( {SCD} \right)\] vì \[CD \bot \left( {SAC} \right) \supset AH \Rightarrow AH \bot CD\;\] Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A;B. Gọi G là trọng tâm tam giác  (ảnh 1)

Gọi \[K\] là trung điểm \[AB\], gọi \[M\] là giao điểm của \[CD\] và \[AB\]

Ta có \[d\left( {G,\left( {SCD} \right)} \right) = \frac{2}{3}d\left( {K,\left( {SCD} \right)} \right) = \frac{2}{3}.\frac{3}{4}d\left( {A,\left( {SCD} \right)} \right) = \frac{1}{2}AH\]

Ta có \[AH = \frac{{SA.AC}}{{SC}} = \frac{{a\sqrt 6 .a\sqrt 2 }}{{\sqrt {S{A^2} + A{C^2}} }} = \frac{{a\sqrt 6 .a\sqrt 2 }}{{\sqrt {6{a^2} + 2{a^2}} }} = \frac{{a\sqrt 6 }}{2}\]

Vậy \[d\left( {G,\left( {SCD} \right)} \right) = \frac{{a\sqrt 6 }}{4}\]

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \[{\log _3}(3x - 2) \ge 2 \Leftrightarrow 3x - 2 \ge 9 \Leftrightarrow x \ge \frac{{11}}{3}.\]

Chọn đáp án B

Câu 2

Lời giải

Ta có \({3^{2x - 3}} >27 \Leftrightarrow 2x - 3 >3 \Leftrightarrow 2x >6 \Leftrightarrow x >3\).

Vậy tập nghiệm của bất phương trình đã cho là \(\left( {3\,;\, + \infty } \right)\).

Chọn đáp án D

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP