Câu hỏi:

14/04/2022 193

Cho hình nón có chiều cao \[{\rm{h}} = 20(cm)\], đường tròn đáy có tâm \[O\] bán kính đường tròn đáy \[r = 25(cm)\]. Một thiết diện đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm \[A,B\]sao cho \[AB = 40(cm)\]. Diện tích mặt cầu tâm\[O\] tiếp xúc với thiết diện bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình nón có chiều cao h=20 cm đường tròn đáy có tâm O bán kính đường tròn đáy  (ảnh 1)Giả sử thiết diện của hình chóp là tam giác \[SAB\], với \[S\] là đỉnh của hình chóp, gọi \[I\] là trung điểm của \[AB\], Gọi \[H\]là hình chiếu vuông góc của \[O\] lên mặt phẳng \[(SAB)\], \[OH\]chính là bán kính mặt cầu tâm \[O\] và tiếp xúc với mặt phẳng thiết diện\[(SAB)\]

Ta có \[AB = 40(cm) \Rightarrow IB = 20(cm)\]

Áp dụng định lí pitago cho tam giác \[OIB\]vuông tại \[I\]

\[OI = \sqrt {O{B^2} - I{B^2}} = \sqrt {{{25}^2} - {{20}^2}} = 15(cm)\]

Xét tam giác \[SOI\] vuông tại \[O\] ta có

\[\frac{1}{{O{H^2}}} = \frac{1}{{{\rm{O}}{{\rm{S}}^2}}} + \frac{1}{{O{I^2}}}\]

\[\frac{1}{{O{H^2}}} = \frac{1}{{{\rm{2}}{{\rm{0}}^2}}} + \frac{1}{{{{15}^2}}} \Rightarrow O{H^2} = 144 \Rightarrow OH = 12(cm)\]

\[S = 4\pi {r^2} = 4.\pi {.12^2} = 576\pi (c{m^2})\]

Chọn đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Bất phương trình \({\log _3}(3x - 2) \ge 2\)có tập nghiệm là:

Xem đáp án » 14/04/2022 9,694

Câu 2:

Diện tích \(S\) của hình phẳng giới hạn bởi các đường \(y = {x^2} - x\) và \(y = 2x\) được tính bởi công thức nào dưới đây?

Xem đáp án » 14/04/2022 6,716

Câu 3:

 Trong không gian \[Oxyz\] cho tam giác \[ABC\] có \[A(2;\,2;\,0)\], \[B(1;\,0;\,2)\], \[C(0;\,4;\,4)\]. Viết phương trình mặt cầu có tâm là \(A\) và đi qua trọng tâm \[G\] của tam giác \(ABC\).

Xem đáp án » 14/04/2022 6,658

Câu 4:

Tập nghiệm của bát phương trình \({3^{2x - 3}} >27\) là

Xem đáp án » 14/04/2022 6,502

Câu 5:

Tập xác định của hàm số \(y = {\log _5}\left( {2x + 1} \right)\) là

Xem đáp án » 14/04/2022 5,508

Câu 6:

Đường cong trong hình bên dưới là đồ thị của hàm số nào trong bốn hàm số dưới đây ?

Đường cong trong hình bên dưới là đồ thị của hàm số nào trong bốn hàm số dưới đây  (ảnh 1)

Xem đáp án » 14/04/2022 4,527

Câu 7:

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Cho hàm số y=f(x) xác định trên R và có bảng biến thiên như sau: Gọi M,N là các điểm cực trị (ảnh 1)

Gọi \(M\), \(N\) là các điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Tính độ dài đoạn \(MN\).

Xem đáp án » 14/04/2022 4,123
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay