Câu hỏi:
14/04/2022 106Cho hình chóp \(S.ABC\) có \(A'\) và \(B'\) lần lượt là trung điểm của \(SA\) và \(SB\). Biết thể tích khối chóp \(S.A'B'C\) bằng 4. Tính thể tích \(V\) của khối chóp \(S.ABC\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(\frac{{{V_{S.A'B'C}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC}}{{SC}}\)\( = \frac{1}{2}.\frac{1}{2}\)\( = \frac{1}{4}\)
Vậy \({V_{S.ABC}} = 4.{V_{S.A'B'C}} = 16\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong không gian \[Oxyz\] cho tam giác \[ABC\] có \[A(2;\,2;\,0)\], \[B(1;\,0;\,2)\], \[C(0;\,4;\,4)\]. Viết phương trình mặt cầu có tâm là \(A\) và đi qua trọng tâm \[G\] của tam giác \(ABC\).
Câu 4:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Gọi \(M\), \(N\) là các điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Tính độ dài đoạn \(MN\).
Câu 5:
Tập xác định của hàm số \(y = {\log _5}\left( {2x + 1} \right)\) là
Câu 6:
Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 2} \right){x^2} + \left( {8m + 1} \right)x\] đồng biến trên \(\mathbb{R}\).
Câu 7:
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và \({u_5} = 10\). Tính tổng \(5\) số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\).
về câu hỏi!