Câu hỏi:

14/04/2022 3,925 Lưu

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A\), \(AB = 2a\). Tính khoảng cách giữa đường thẳng \(AA'\) và mặt bên \(\left( {BCC'B'} \right)\).

 Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông cân tại A, AB=2a. Tính khoảng cách (ảnh 1)

A. \(a\sqrt 2 \).

B. \(a\).

C. \(2a\sqrt 2 \).

D. \(\frac{{a\sqrt 2 }}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

 Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông cân tại A, AB=2a. Tính khoảng cách (ảnh 2)

Vì \(AA'//\left( {BB'C'C} \right)\) nên \(d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\).

Trong \(\left( {ABC} \right)\) kẻ \(AH \bot BC,\) \(H\) là trung điểm của \(BC\).

Mà\(\left( {BCC'B'} \right) \bot \left( {ABC} \right);\,\left( {BCC'B'} \right) \cap \left( {ABC} \right) = BC\) nên \(AH \bot \left( {BCC'B'} \right)\).

Suy ra \(d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {A;\left( {BCC'B'} \right)} \right) = AH = \frac{{BC}}{2} = \frac{{2a\sqrt 2 }}{2} = a\sqrt 2 \).

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(x \le \frac{4}{3}\).

B. \(x \ge \frac{{11}}{3}\).

C.\(x \le \frac{{11}}{3}\).

D.\(x \ge \frac{4}{3}\).

Lời giải

Ta có \[{\log _3}(3x - 2) \ge 2 \Leftrightarrow 3x - 2 \ge 9 \Leftrightarrow x \ge \frac{{11}}{3}.\]

Chọn đáp án B

Câu 2

A. \(\left( { - \infty \,;\,15} \right)\).

B. \(\left( {15\,;\, + \infty } \right)\).

C. \(\left( { - \infty \,;\,3} \right)\).

D. \(\left( {3\,;\, + \infty } \right)\).

Lời giải

Ta có \({3^{2x - 3}} >27 \Leftrightarrow 2x - 3 >3 \Leftrightarrow 2x >6 \Leftrightarrow x >3\).

Vậy tập nghiệm của bất phương trình đã cho là \(\left( {3\,;\, + \infty } \right)\).

Chọn đáp án D

Câu 3

A. \(S = \int\limits_{ - 1}^1 {\left( {{x^2} + x} \right)} {\rm{d}}x\).

B. \(S = \int\limits_1^{ - 1} {\left( {{x^2} + x} \right)} {\rm{d}}x\).

C. \(S = \int\limits_0^3 {\left( {{x^2} - 3x} \right)} {\rm{d}}x\).

D. \(S = \int\limits_0^3 {\left( {3x - {x^2}} \right)} {\rm{d}}x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = 4\].

B. \[{(x + 2)^2} + {(y + 2)^2} + {z^2} = 5\].

C. \[{(x - 2)^2} + {(y - 2)^2} + {z^2} = \sqrt 5 \].

D. \({(x - 2)^2} + {(y - 2)^2} + {z^2} = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left[ { - \frac{1}{2}; + \infty } \right)\).

B. \(\left( { - \frac{1}{2}; + \infty } \right)\).

C. \(\left( { - \infty ; - \frac{1}{2}} \right)\).

D. \(\left( { - \infty ; - \frac{1}{2}} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y\, = \, - \,{x^3}\, + \,3x\, + \,2\].

B. \[y\, = \, - \,{x^3}\, + \,3{x^2}\, - \,2\].

C. \[y\, = {x^3}\, - \,3x\, + \,2\].

D . \[y\, = \,{x^3}\, - \,3{x^2}\, + \,2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP