Câu hỏi:

14/04/2022 7,759

Một đoàn tàu có 5 toa chở khách với mỗi toa còn ít nhất 5 chỗ trống. Trên sân ga có 5 hành khách chuẩn bị lên tàu. Tính xác suất để có ít nhất 1 toa có nhiều hơn 2 khách lên

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án D

Số phần tử không gian mẫu: \(n(\Omega ) = {5^5} = 3125\).

Gọi A là biến cố: “Có ít nhất 1 toa có nhiều hơn 2 khách lên”.

Có 4 trường hợp:

TH1:Một toa có 3 khách lên, 1 toa có 2 khách lên, 3 toa còn lại không có khách lên

- Chọn 1 toa có 3 khách lên: có \(C_5^1\) cách;

- Chọn 3 khách lên toa vừa chọn: có \(C_5^3\) cách;

- Chọn 1 toa cho 2 khách còn lại: có \(C_4^1\) cách;

Trường hợp này có: \(C_5^1.C_5^3.C_4^1 = 200\)cách.

TH2:1 toa có 3 khách lên, 2 toa có 1 khách, 2 toa còn lại không có khách lên

- Chọn 1 toa có 3 khách lên: có \(C_5^1\) cách;

- Chọn 3 khách lên toa vừa chọn: có \(C_5^3\) cách;

- Chọn 2 toa cho 2 khách còn lại: có \(A_4^2\) cách;

Trường hợp này có: \(C_5^1.C_5^3.A_4^2 = 600\)cách.

TH3:1 toa có 4 khách lên, 1 toa có 1 khách, 3 toa còn lại không có khách lên

- Chọn 1 toa có 4 khách lên: có \(C_5^1\) cách;

- Chọn 4 khách lên toa vừa chọn: có \(C_5^4\) cách;

- Chọn 1 toa cho 1 khách còn lại: có \(C_4^1\) cách;

Trường hợp này có: \(C_5^1.C_5^4.C_4^1 = 100\)cách.

TH4:1 toa có 5 khách lên, 4 toa còn lại không có khách lên

Trường hợp này có: \(C_5^1 = 5\)cách.

Số phần tử của biến cố A: \(n(A) = 200 + 600 + 100 + 5 = 905\).

Vậy xác suất của biến cố A là: \(P(A) = \frac{{905}}{{3125}} = \frac{{181}}{{625}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho cấp số cộng \(({u_n})\)có \({u_1} = 4;\,{u_2} = 1\). Giá trị của \({u_{10}}\)bằng:

Xem đáp án » 15/04/2022 20,089

Câu 2:

Cho khối nón có bán kính \[R = 3\], đường sinh \[l = 5\]. Thể tích khối nón đã cho bằng

Xem đáp án » 14/04/2022 8,989

Câu 3:

Cho khối chóp có thể tích \[V = 10\] và chiều cao \[h = 6\]. Diện tích đáy của khối chóp đã cho bằng

Xem đáp án » 14/04/2022 6,120

Câu 4:

Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

Xem đáp án » 15/04/2022 5,728

Câu 5:

Cho hình chóp \(S.ABCD\) có \[SA\,\]vuông góc với mặt phẳng \(\left( {ABCD} \right)\), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\) có \(AB = 2AD = 2DC = a\) (Hình vẽ minh họa). Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABCD} \right)\) bằng

Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng ABCD, SA= (a.căn bậc hai của 2)/2, (ảnh 1)

Xem đáp án » 14/04/2022 5,495

Câu 6:

Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là

Xem đáp án » 14/04/2022 5,008
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay