Câu hỏi:

22/04/2022 263

Cho hình lăng trụ ABC.A'B'C' và M, N là hai điểm lần lượt trên cạnh CA, CB sao cho MN song song với AB và CMCA=k. Mặt phẳng MNB'A' chia khối lăng trụ ABC.A'B'C' thành hai phần có thể tích V1 (phần chứa điểm C) và V2 sao cho V1V2=2. Khi đó giá trị của k là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

+ Vì ba mặt phẳng (MNB'A').(ACC'A'),(BCC'B') đôi một cắt nhau theo ba giao tuyến phân biệt A'M,B'N,CC'A'M,CC' không song song nên A'M,B'N,CC' đồng qui tại S.

Cho hình lăng trụ  và M, N là hai điểm lần lượt trên cạnh CA, CB sao cho MN song song với AB và . Mặt phẳng  chia khối lăng trụ  thành hai phần có thể tích  (phần chứa điểm C) và  sao cho . Khi đó giá trị của k là (ảnh 1)

ta có k=CMCA=MNAB=MNA'B'=SMSA'=SNSB'=SCSC'

+ Từ đó VS.MNC=k3VS.A'B'C'V1=VMNC.A'B'C'=1k3VS.A'B'C'.

+ Mặt khác VABC.A'B'C'VS.A'B'C'=3CC'SC'=3SC'SCSC'=31kVS.A'B'C'=VABC.A'B'C'31k

Suy ra V1=1k3VABC.A'B'C'31k=k2+k+1.VABC.A'B'C'3.

+ Vì V1V2=2 nên V1=23VABC.A'B'C'k2+k+13=23k2+k1=0k=1+52(k>0).

Vậy k=1+52.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Ta có: Scó Tâm : O0;0;0Bán kính : R=5

dO;P=1212+22+22=4<5=R. Suy ra Scắt P theo giao tuyến là đường tròn C. Gọi r là bán kính của C ta có: r=R2d2O;P=2516=3.

Lời giải

Chọn B

Cho hình chóp tam giác S.ABC  có SA  vuông góc với mặt phẳng  Tam giác  đều, cạnh  Góc giữa  và mặt phẳng  bằng: (ảnh 2)

Ta có: SAABC AC là hình chiếu của SC trên ABC.

SC,ABC=SC,AC=SCA

Xét ΔSAC vuông tại A ta có:

tanSAC=SAAC=a3a=3
SCA=600.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP