Câu hỏi:
22/04/2022 268Cho các số thực thỏa mãn . Tính khi biểu thức đạt giá trị lớn nhất.
Quảng cáo
Trả lời:
Chọn B
Cách 1: phương pháp đại số.
Ta có: .
Áp dụng bất đẳng thức giá trị tuyệt đối và bất đẳng thức BCS, ta có kết quả sau:
Đẳng thức xảy ra khi:
Khi đó:
Cách 2: phương pháp hình học.
Trong không gian , gọi mặt cầu có tâm , bán kính . Khi đó:
và mặt phẳng .
Gọi , ta có:.
Vì .
Bài toán đã cho trở thành: Tìm sao cho lớn nhất.
Gọi là đường thẳng qua và vuông góc .
Điểm cần tìm chính là 1 trong 2 giao điểm của với .
Ta có: .
Vậy
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian , cho mặt cầu và mặt phẳng . Tính bán kính đường tròn giao tuyến của và .
Câu 2:
Cho hình chóp tam giác có vuông góc với mặt phẳng Tam giác đều, cạnh Góc giữa và mặt phẳng bằng:
Câu 3:
Diện tích xung quanh của hình nón có độ dài đường sinh và bán kính bằng
Câu 5:
Cho là đường thẳng đi qua điểm và vuông góc với mặt phẳng . Phương trình chính tắc của là
Câu 6:
Một trong bốn hàm số cho trong các phương án sau đây có đồ thị như hình vẽ
Hỏi hàm số đó là hàm số nào?
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận