Câu hỏi:

18/04/2022 219

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu Sm:x12+y12+zm2=m24 và hai điểm A2;3;5, B1;2;4. Tìm giá trị nhỏ nhất của m để trên Sm tồn tại điểm M sao cho MA2MB2=9.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi Mx;y;z, suy ra
MA2MB2=9x22+y32+z52x12+y22+z42=9
x+y+z4=0
Suy ra: Tập các điểm Mx;y;z thỏa mãn MA2MB2=9 là mặt phẳng P:x+y+z4=0
Trên Sm tồn tại điểm M sao cho MA2MB2=9 khi và chỉ khi Sm và (P) có điểm chung
dI;PR1+1+m41+1+1m22m23m
m216m+160843m8+43
Vậy giá trị nhỏ nhất của m là 843.
Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

nP=1;1;2, ud=2;1;3, Gọi I=dP, IdI2t;3+t;23t,
IP2t3+t+223t6=0t=1I2;2;5
Gọi Δ là đường thẳng cần tìm.
Theo giả thiết uΔuduΔnPuΔ=nP,ud=1;7;3
Và đường thẳng Δ đi qua điểm I. Vậy Δ:x+21=y27=z53.
Chọn đáp án A

Lời giải

log2x23x+2=1x23x+2=21                                            x23x=0x=0x=3
Vậy tập nghiệm của pt đã cho là: 0;3.
Chọn đáp án D

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP