Cho hàm số có và . Khẳng định nào sau đây là khẳng định đúng?
A. Đồ thị hàm số đã cho không có tiệm cận đứng.
B. Trục hoành và trục tung là hai tiệm cận của đồ thị hàm số đã cho.
C. Đồ thị hàm số đã cho có một tiệm cận đứng là đường thẳng .
D. Hàm số đã cho có tập xác định là .
Quảng cáo
Trả lời:

Theo định nghĩa về tiệm cận, ta có:
là TCN.
là TCĐ.
Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hình dáng đồ thị thể hiện . Loại đáp án A, D.
Thấy đồ thị cắt trục hoành tại điểm nên thay vào hai đáp án B và C, chỉ có B thỏa mãn.
Chọn B.
Lời giải
Gọi là biến cố: “Có ít nhất một con xúc sắc xuất hiện mặt một chấm”.
Do mỗi xúc sắc có thể xảy ra trường hợp nên số kết quả có thể xảy ra là .
Tìm số kết quả thuận lợi cho .
Ta có các trường hợp sau:
.
Đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.