Câu hỏi:

20/04/2022 4,270 Lưu

Cho hàm số y = f(x) có đồ thị như hình bên. Hỏi phương trình 2f(x) = 5 có bao nhiêu nghiệm trên đoạn [-1; 2]?

Cho hàm số y = f(x) có đồ thị như hình bên. Hỏi phương trình 2f(x) = 5 (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Số nghiệm của phương trình f(x) = m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

Cách giải:

Ta có 2fx=5fx=52.

Số nghiệm của phương trình fx=52 là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y=52.

Dựa vào BBT ta thấy đường thẳng y=52. cắt đồ thị hàm số y = f(x) tại 2 điểm có hoành độ thuộc [-1; 2]

Vậy phương trình 2f(x) = 5 có 2 nghiệm trên đoạn [-1; 2].

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

- Số nghiệm của phương trình f(x) = m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

- Tìm nghiệm x2, từ đó tìm nghiệm x.

Cách giải:

Ta có: fx2+1=0fx2=1, số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = -1

Cho hàm số bậc ba y = f(x) có đồ thị như hình bên. Phương trình  (ảnh 2)

Dựa vào đồ thị ta thấy fx2=1x2=a<0Vô nghimx2=b>0x2=c>0x=±bx=±c.

Vậy phương trình fx2+1=0 có 4 nghiệm.

Chọn C.

Chú ý khi giải: Đề bài yêu cầu tìm nghiệm của phương trình fx2+1=0 là tìm nghiệm x chứa không tìm nghiệm x2.

Câu 2

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm: amx+ndx=amx+nmlna+C.

Cách giải:

fxdx=32x1dx=32x1ln3+C=9x6ln3+C.

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP