Câu hỏi:

20/04/2022 217 Lưu

Gọi z1,z2 là các nghiệm phức của phương trình z23z+5=0. Môđun của số phức 2z1¯32z2¯3 bằng:  

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

- Thực hiện phép nhân số phức.

- Sử dụng tính chất: z1¯.z2¯=z1z2¯,z1¯+z2¯=z1+z2¯.

Cách giải:

Ta có:

2z1¯32z2¯3

=4z1¯.z2¯6z1¯+z2¯+9

=4z1z2¯6z1+z2¯+9

z1,z2 là các nghiệm phức của phương trình z23z+5=0 nên z1z2=5,z1+z2=3.

Vậy 2z1¯32z2¯3=4z1z2¯6z1+z2¯+9=4.56.3+9=11.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

- Số nghiệm của phương trình f(x) = m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

- Tìm nghiệm x2, từ đó tìm nghiệm x.

Cách giải:

Ta có: fx2+1=0fx2=1, số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = -1

Cho hàm số bậc ba y = f(x) có đồ thị như hình bên. Phương trình  (ảnh 2)

Dựa vào đồ thị ta thấy fx2=1x2=a<0Vô nghimx2=b>0x2=c>0x=±bx=±c.

Vậy phương trình fx2+1=0 có 4 nghiệm.

Chọn C.

Chú ý khi giải: Đề bài yêu cầu tìm nghiệm của phương trình fx2+1=0 là tìm nghiệm x chứa không tìm nghiệm x2.

Câu 2

Lời giải

Phương pháp:

Sử dụng công thức tính nguyên hàm: amx+ndx=amx+nmlna+C.

Cách giải:

fxdx=32x1dx=32x1ln3+C=9x6ln3+C.

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP